Download or read book Orthogonal Polynomials of Several Variables written by Charles F. Dunkl and published by Cambridge University Press. This book was released on 2014-08-21 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated throughout, this revised edition contains 25% new material covering progress made in the field over the past decade.
Download or read book Classical and Quantum Orthogonal Polynomials in One Variable written by Mourad Ismail and published by Cambridge University Press. This book was released on 2005-11-21 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.
Download or read book Topics in Polynomials of One and Several Variables and Their Applications written by Themistocles M. Rassias and published by World Scientific. This book was released on 1993 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an account of some of the most important work that has been done on various research problems in the theory of polynomials of one and several variables and their applications. It is dedicated to P L Chebyshev, a leading Russian mathematician.
Download or read book Orthogonal Polynomials of Several Variables written by Charles F. Dunkl and published by Cambridge University Press. This book was released on 2014-08-21 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers.
Download or read book Orthogonal Polynomials and Special Functions written by Francisco Marcellàn and published by Springer Science & Business Media. This book was released on 2006-06-19 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.
Download or read book Orthogonal Polynomials of Several Variables written by Charles F. Dunkl and published by Cambridge University Press. This book was released on 2001-02-22 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Orthogonal polynomials of several variables, approximation theory, symmetry-group methods.
Download or read book Orthogonal Polynomials written by Gabor Szeg and published by American Mathematical Soc.. This book was released on 1939-12-31 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.
Download or read book An Introduction to Orthogonal Polynomials written by Theodore S Chihara and published by Courier Corporation. This book was released on 2011-02-17 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This concise introduction covers general elementary theory related to orthogonal polynomials and assumes only a first undergraduate course in real analysis. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some specific systems of orthogonal polynomials. 1978 edition"--
Download or read book written by Charles F. Dunkl and published by . This book was released on 2001 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: 本书以英文的形式介绍了多变量的正交多项式的内容。
Download or read book Affine Hecke Algebras and Orthogonal Polynomials written by I. G. Macdonald and published by Cambridge University Press. This book was released on 2003-03-20 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: First account of a theory, created by Macdonald, of a class of orthogonal polynomial, which is related to mathematical physics.
Download or read book Orthogonal Polynomials written by Paul Nevai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the Proceedings of the NATO Advanced Study Institute on "Orthogonal Polynomials and Their Applications" held at The Ohio State University in Columbus, Ohio, U.S.A. between May 22,1989 and June 3,1989. The Advanced Study Institute primarily concentrated on those aspects of the theory and practice of orthogonal polynomials which surfaced in the past decade when the theory of orthogonal polynomials started to experience an unparalleled growth. This progress started with Richard Askey's Regional Confer ence Lectures on "Orthogonal Polynomials and Special Functions" in 1975, and subsequent discoveries led to a substantial revaluation of one's perceptions as to the nature of orthogonal polynomials and their applicability. The recent popularity of orthogonal polynomials is only partially due to Louis de Branges's solution of the Bieberbach conjecture which uses an inequality of Askey and Gasper on Jacobi polynomials. The main reason lies in their wide applicability in areas such as Pade approximations, continued fractions, Tauberian theorems, numerical analysis, probability theory, mathematical statistics, scattering theory, nuclear physics, solid state physics, digital signal processing, electrical engineering, theoretical chemistry and so forth. This was emphasized and convincingly demonstrated during the presentations by both the principal speakers and the invited special lecturers. The main subjects of our Advanced Study Institute included complex orthogonal polynomials, signal processing, the recursion method, combinatorial interpretations of orthogonal polynomials, computational problems, potential theory, Pade approximations, Julia sets, special functions, quantum groups, weighted approximations, orthogonal polynomials associated with root systems, matrix orthogonal polynomials, operator theory and group representations.
Download or read book Orthogonal Polynomials and Random Matrices A Riemann Hilbert Approach written by Percy Deift and published by American Mathematical Soc.. This book was released on 2000 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n times n matrices exhibit universal behavior as n > infinity? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.
Download or read book Analytic Combinatorics in Several Variables written by Robin Pemantle and published by Cambridge University Press. This book was released on 2013-05-31 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.
Download or read book A First Course in Random Matrix Theory written by Marc Potters and published by Cambridge University Press. This book was released on 2020-12-03 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
Download or read book Orthogonal Polynomials in Two Variables written by P.K. Suetin and published by Routledge. This book was released on 2022-03-31 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a comprehensive theory of orthogonal polynomials in two real variables and properties of Fourier series in these polynomials, this volume also gives cases of orthogonality over a region and on a contour. The text includes the classification of differential equations which admits orthogonal polynomials as eigenfunctions and several two-dimensional analogies of classical orthogonal polynomials.
Download or read book Orthogonal Polynomials written by Mama Foupouagnigni and published by Springer Nature. This book was released on 2020-03-11 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
Download or read book Orthogonal Polynomials for Exponential Weights written by A. L. Levin and published by Springer Science & Business Media. This book was released on 2001-06-29 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century and undoubtedly will continue to grow in importance in the future. In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0 ; likewise, the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov-Bernstein and Nikolskii inequalities. The book will be of interest to researchers in approximation theory, harmonic analysis, numerical analysis, potential theory, and all those that apply orthogonal polynomials.