EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimization of Capillary Trapping of CO2 Sequestration in Saline Aquifers

Download or read book Optimization of Capillary Trapping of CO2 Sequestration in Saline Aquifers written by Elizabeth Joy Harper and published by . This book was released on 2012 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. During sequestration, carbon dioxide (CO2) gas effluent is captured from coal fired power plants and is injected into a storage saline aquifer or depleted oil reservoir. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore-scale. Pairs of proxy fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non-wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, fluid viscosities and flow rate, were altered to characterize their relative impact on capillary trapping. Computed x-ray microtomography (CMT) was used to identify immobilized CO2 (non-wetting fluid) volumes after imbibition and drainage events. CMT analyzed data suggests that capillary behavior in glass bead systems do not follow the same trends as in consolidated natural material systems. An analysis of the disconnected phases in both the initial and final flood events indicate that the final (residual) amount of trapped non-wetting phase has a strong linear dependence on the original amount of non-wetting phase (after primary imbibition), which corresponds to the amount of gas or oil present in the formation prior to CO2 injection. More importantly, the residual trapped gas was also observed to increase with increasing non-wetting fluid phase viscosity. This suggests that CO2 sequestration can be optimized in two ways: through characterization of the trapped fluid present in the formation prior to injection and through alterations to the viscosity of supercritical CO2.

Book Optimization of CO2 Sequestration in Saline Aquifers

Download or read book Optimization of CO2 Sequestration in Saline Aquifers written by Ramesh K. Agarwal and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization of CO2 Sequestration in Saline Aquifers.

Book System Design and Optimization of CO2 Storage in Deep Saline Aquifers

Download or read book System Design and Optimization of CO2 Storage in Deep Saline Aquifers written by Hossein Shamshiri and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization of waterflooding sweep efficiency has been widely applied in reservoir engineering to improve hydrocarbon recovery while delaying water breakthrough and minimizing the bypassed oil in reservoirs. We develop a new framework to optimize flooding sweep efficiency in geologic formations with heterogeneous properties and demonstrate its application to waterflooding and geological CO2 sequestration problems. The new method focuses on equalizing and delaying (under constant total injected volume) the breakthrough time of the injected fluid at production wells. For application to CO2 sequestration where producers may not be present, we introduce the concept of pseudo production wells that have insignificant production rates (with negligible effect on the overall flow regime) for quantification of hypothetical breakthrough curves that can be used for optimization purpose. We apply the new method to waterflooding and CO2 sequestration optimization using two heterogeneous reservoir models. We show that in water flooding experiments, the proposed method improves the sweep efficiency by delaying the field breakthrough and equalizing breakthrough times in all production wells. In this case, the optimization results in increased oil recovery and decreased water production. We apply a modified version of the proposed algorithm to geologic CO2 sequestration problems to maximize the storage capacity of aquifers by enhancing the residual and dissolution trapping. The results from applying the proposed approach to optimization of geologic CO2 storage problems illustrate the effectiveness of the algorithm in improving residual and solubility trapping by increasing the contact between available fresh brine and the injected CO2 plume through a more uniform distribution of CO2 in the aquifer.

Book Optimization of Multiple Wells in Carbon Sequestration

Download or read book Optimization of Multiple Wells in Carbon Sequestration written by Swathi Gangadharan and published by . This book was released on 2014 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: Injection of CO2 in saline aquifers is considered as one of the best strategies for the reduction of greenhouse gases. In order to select a potential saline aquifer storage site for carbon sequestration, many parameters are considered such as relative permeability, thickness, compressibility, porosity, salinity and well interference. These are significant because they affect the CO2 storage capacity of the reservoir. The one of the most important criteria to be considered during sequestration is the pressure profile inside the reservoir as the sequestered CO2 increases the pressure within the saline formation over time. In order to maintain the integrity of the reservoir, the reservoir pressure is always maintained below the fracture pressure. Thus, modeling of pressure profile is essential as it controls the maximum amount of CO2 which can be into the reservoir. There are various analytical and numerical models to determine the bottom-hole pressure for CO2 injection. The main objective of my thesis is to examine and identify the analytical approaches in modeling of pressure profile during CO2 injection. It includes single injection as well as multiple wells injection scenarios. The second case is much more important from practical point of view and applicability of analytical tools should be validated. Two models of injection/production are considered: (i) Single-phase (brine production from a brine reservoir) and (ii) Two phase model (CO2 injection in a brine reservoir). In both cases, we analyzed the pressure build-up and discussed the results in comparison with numerical simulations. We also present a sensitivity analysis of the reservoir parameters on CO2 sequestration. The second part of the thesis focuses on finding ways to increase the CO2 injection capacity of saline aquifers by using the technique of multiple wells injection strategy. Numerous test cases will be presented to optimize the well placement and number of wells to get the maximum sequestration. The thesis will look upon the different ways to maintain the reservoir pressure below fracture pressure such as optimization of injection wells, varying the flow-rates of injection wells and by placement of relief wells to produce brine from the reservoir.

Book Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers

Download or read book Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers written by Zheming Zhang and published by . This book was released on 2013 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: With heightened concerns on CO2 emissions from pulverized-coal power plants, there has been major emphasis in recent years on the development of safe and economical Geological Carbon Sequestration (GCS) technology. Although among one of the most promising technologies to address the problem of anthropogenic global-warming due to CO2 emissions, the detailed mechanisms of GCS are not well-understood. As a result, there remain many uncertainties in determining the sequestration capacity of the formation/reservoir and the safety of sequestered CO2 due to leakage. These uncertainties arise due to lack of information about the detailed interior geometry of the formation and the heterogeneity in its geological properties such as permeability and porosity which influence the sequestration capacity and plume migration. Furthermore, the sequestration efficiency is highly dependent on the injection strategy which includes injection rate, injection pressure, type of injection well employed and its orientation etc. The goal of GCS is to maximize the sequestration capacity and minimize the plume migration by optimizing the GCS operation before proceeding with its large scale deployment. In this dissertation, numerical simulations of GCS are conducted using the DOE multi-phase flow solver TOUGH2 (Transport of Unsaturated Groundwater and Heat). A multi-objective optimization code based on genetic algorithm is developed to optimize the GCS operation for a given geological formation. Most of the studies are conducted for sequestration in a saline formation (aquifer). First, large scale GCS studies are conducted for three identified saline formations for which some experimental data and computations performed by other investigators are available, namely the Mt. Simon formation in Illinois basin, Frio formation in southwest Texas, and the Utsira formation off the coast of Norway. These simulation studies have provided important insights as to the key sources of uncertainties that can influence the accuracy in simulations. For optimization of GCS practice, a genetic algorithm (GA) based optimizer has been developed and combined with TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been validated by performing optimization studies on a number of model problems and comparing the results with brute force optimization which requires large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection is investigated in the context of GCS; GA-TOUGH2 is applied to determine the optimal WAG operation for enhanced CO2 sequestration capacity. GA-TOUGH2 is also used to perform optimization designs of time-dependent injection rate for optimal injection pressure management, and optimization designs of well distribution for minimum well interference. Results obtained from these optimization designs suggest that over 20% reduction of in situ CO2 footprint, greatly enhanced CO2 dissolution, and significantly improved well injectivity can be achieved by employing GA-TOUGH2. GA-TOUGH2 has also been employed to determine the optimal well placement in a multi-well injection operation. GA-TOUGH2 appears to hold great promise in studying a host of other optimization problems related to GCS.

Book An Investigation Into the Pore scale Mechanisms of Capillary Trapping

Download or read book An Investigation Into the Pore scale Mechanisms of Capillary Trapping written by Anna L. Herring and published by . This book was released on 2015 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geologic CO2 sequestration is a climate change mitigation strategy that prevents CO2 emissions to the atmosphere by capturing CO2 gasses from large point source emissions streams and then pressurizing and pumping the supercritical-state CO2 into underground geologic storage reservoirs. Once underground, CO2 is prevented from buoyant migration to the surface by various trapping mechanisms, one of which is capillary trapping. Capillary trapping is a secure trapping mechanism that immobilizes CO2 on relatively short timescales; accurate prediction and optimization of capillary trapping of CO2 is crucial to ensure the safety and success of a sequestration operation. The research comprising this dissertation utilizes x-ray computed microtomography (x-ray CMT) to allow for three-dimensional (3D) investigation of the main factors influencing nonwetting phase capillary trapping from a pore-scale in-situ perspective. Results from ambient- and supercritical-condition experiments are presented that provide insight as to the controls on capillary trapping during multiphase flow in porous media. The presented findings may be used to help design injection strategies that optimize capillary trapping of CO2 during sequestration operations and to help develop more accurate predictive transport models.

Book Local Capillary Trapping and Permeability retarded Accumulation During Geologic Carbon Sequestration

Download or read book Local Capillary Trapping and Permeability retarded Accumulation During Geologic Carbon Sequestration written by Bo Ren and published by . This book was released on 2017 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safe storage of CO2 in saline aquifers depends on CO2 migration rate, accumulation, and trapping inside saline aquifers that have intrinsic heterogeneity. This heterogeneity can be in both capillary entry pressure and permeability. The former heterogeneity causes local capillary trapping while the latter results in permeability-retarded accumulation. A main objective of this dissertation is to understand how both local capillary trapping and permeability-retarded accumulation secure CO2 storage. We establish a fast simulation technique to model local capillary trapping during CO2 injection into saline aquifers. In this technique, modeling efforts are decoupled into two parts: identifying trapping in a capillary entry pressure field and simulating CO2 flow in a permeability field. The former fields are correlated with the latter using the Leverett j-function. The first part describes an extended use of a geologic criterion originally proposed by Saadatpoor (2012). This criterion refers to a single value of ‘critical capillary entry pressure’ that is used to indicate barrier or local traps cells during buoyant flow. Three issues with the criterion are the unknown physical critical value, the massive overestimation of trapping, and boundary barriers. The first two issues are resolved through incorporating viscous flow of CO2. The last issue is resolved through creating periodic boundaries. This creation enables us to study both the amount and clusters of local capillary traps in infinite systems, and meanwhile the effects of reservoir heterogeneity, system size, aspect ratio, and boundary types are examined. In the second part, we adapt a connectivity analysis to assess CO2 plume dynamics. This analysis is then integrated into the geologic criterion to evaluate how injection strategies affect local capillary trapping in reservoirs. We demonstrate that reservoir heterogeneity affects the optimal injection strategies in terms of maximizing this trapping. We conduct analytical and numerical modeling of CO2 accumulations caused by both permeability hindrances and capillary barriers. The analytical model describes CO2 buoyant migration and accumulation at a low permeability region above a high-permeability region. In the limiting case of zero capillary pressure, the model equation is solved using the method of characteristics. The permeability-retarded accumulation is illustrated through CO2 saturation profiles and time-distance diagrams. Capillary trapping is subsequently accounted for by graphically incorporating the capillary pressure curve and capillary threshold effect. The relative importance of these two types of accumulations is examined under various buoyant source fluxes and porous media properties. Results demonstrate that accumulation estimate that account for only capillary trapping understates the amount of CO2 accumulated beneath low permeability structures during significant periods of a sequestration operation.

Book Fundamentals and Practical Aspects of Gas Injection

Download or read book Fundamentals and Practical Aspects of Gas Injection written by Reza Azin and published by Springer Nature. This book was released on 2021-07-28 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers different aspects of gas injection, from the classic pressure maintenance operation to enhanced oil recovery (EOR), underground gas storage (UGS), and carbon capture and storage (CCS). The authors detail the unique characteristics and specific criteria of each application, including: material balance equations phase behaviour reservoir engineering well design operating aspects surface facilities environmental issues Examples, data, and simulation codes are provided to enable the reader to gain an in-depth understanding of these applications. Fundamentals and Practical Aspects of Gas Injection will be of use to practising engineers in the fields of reservoir engineering, and enhanced oil recovery. It will also be of interest to researchers, academics, and graduate students working in the field of petroleum engineering.

Book Local Capillary Trapping in Geological Carbon Storage

Download or read book Local Capillary Trapping in Geological Carbon Storage written by Ehsan Saadatpoor and published by . This book was released on 2012 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: After the injection of CO2 into a subsurface formation, various storage mechanisms help immobilize the CO2. Injection strategies that promote the buoyant movement of CO2 during the post-injection period can increase immobilization by the mechanisms of dissolution and residual phase trapping. In this work, we argue that the heterogeneity intrinsic to sedimentary rocks gives rise to another category of trapping, which we call local capillary trapping. In a heterogeneous storage formation where capillary entry pressure of the rock is correlated with other petrophysical properties, numerous local capillary barriers exist and can trap rising CO2 below them. The size of barriers depends on the correlation length, i.e., the characteristic size of regions having similar values of capillary entry pressure. This dissertation evaluates the dynamics of the local capillary trapping and its effectiveness to add an element of increased capacity and containment security in carbon storage in heterogeneous permeable media. The overall objective is to obtain the rigorous assessment of the amount and extent of local capillary trapping expected to occur in typical storage formations. A series of detailed numerical simulations are used to quantify the amount of local capillary trapping and to study the effect of local capillary barriers on CO2 leakage from the storage formation. Also, a research code is developed for finding clusters of local capillary trapping from capillary entry pressure field based on the assumption that in post-injection period the viscous forces are negligible and the process is governed solely by capillary forces. The code is used to make a quantitative assessment of an upper bound for local capillary trapping capacity in heterogeneous domains using the geologic data, which is especially useful for field projects since it is very fast compared to flow simulation. The results show that capillary heterogeneity decreases the threshold capacity for non-leakable storage of CO2. However, in cases where the injected volume is more than threshold capacity, capillary heterogeneity adds an element of security to the structural seal, regardless of how CO2 is accumulated under the seal, either by injection or by buoyancy. In other words, ignoring heterogeneity gives the worst-case estimate of the risk. Nevertheless, during a potential leakage through failed seals, a range of CO2 leakage amounts may occur depending on heterogeneity and the location of the leak. In geologic CO2 storage in typical saline aquifers, the local capillary trapping can result in large volumes that are sufficiently trapped and immobilized. In fact, this behavior has significant implications for estimates of permanence of storage, for assessments of leakage rates, and for predicting ultimate consequences of leakage.

Book Proceedings of the International Field Exploration and Development Conference 2023

Download or read book Proceedings of the International Field Exploration and Development Conference 2023 written by Jia'en Lin and published by Springer Nature. This book was released on with total page 965 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geologic Carbon Sequestration

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Book Final Report of  A Detailed Study of the Physical Mechanisms Controlling CO2 Brine Capillary Trapping in the Subsurface   University of Arizona  DE SC0006696

Download or read book Final Report of A Detailed Study of the Physical Mechanisms Controlling CO2 Brine Capillary Trapping in the Subsurface University of Arizona DE SC0006696 written by and published by . This book was released on 2016 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon capture and storage (CCS) of carbon dioxide emissions generated by production or combustion of fossil fuels is a technologically viable means to reduce the build-up of CO2 in the atmosphere and oceans. Using advantages of scale and location, CCS is particularly suitable for large point sources near ubiquitous deep saline aquifers, depleted gas reservoirs, or at production reservoirs for enhanced oil recovery (EOR). In the BES-funded research project, Oregon State University (OSU) carried out capillary trapping experiments with proxy fluids that mimic the properties of the scCO2/brine system under ambient temperatures and pressures, and successfully developed a unique and novel x-ray compatible, high-pressure, elevated temperature setup to study the scCO2/brine system under challenging reservoir conditions. Both methodologies were applied to a variety of porous media, including synthetic (glass bead) and geologic (Bentheimer sandstone) materials. The University of Arizona (UA) developed pore-scale lattice Boltzmann (LB) models which are able to handle the experimental conditions for proxy fluids, as well as the scCO2/brine system, that are capable of simulating permeability in volumes of tens of millions of fluid elements. We reached the following summary findings (main institute indicated): 1. (OSU/UA) To understand capillary trapping in a multiphase fluid-porous medium system, the system must be analyzed from a pore-scale force balance perspective; trapping can be enhanced by manipulating wetting and nonwetting phase fluid properties. 2. (OSU) Pore-scale fluid connectivity and topology has a clear and direct effect on nonwetting phase capillary trapping efficiency. 3. (OSU) Rock type and flow regime also have a pronounced effects on capillary trapping. 4. (OSU/UA) There is a predictable relationship between NWP connectivity and NWP saturation, which allows for development of injection strategies that optimize trapping. The commonly used Land model (Land, 1968) does not predict amount of trapped NWP accurately. 5. (UA) There are ambiguities regarding the segmentation of large-volume gray-scale CT data into pore-volumes suitable for pore-scale modeling. Simulated permeabilities vary by three orders of magnitude and do not resemble observed values very well. Small-volume synchrotron-based CT data (such as produced by OSU) does not suffer significantly from segmentation ambiguities. 6. (UA) A standard properly parameterized Shan-Chen model LB model is useful for simulating porous media with proxy fluids as well as the scCO2/brine system and produces results that are consistent with tomographic observations. 7. (UA) A LB model with fluid-interactions defined by a (modified) Peng-Robinson Equation of State is able to handle the scCO2/brine system with variable solid phase wettability. This model is numerically stable at temperatures between 0 and 250 °C and pressures between 3 and 50 MPa, and produces appropriate densities above the critical point of CO2 and exhibits three-phase separation below. Based on above findings OSU and UA have proposed continued experimentation and pore-scale modeling of the scCO2/brine system. The reported research has extensively covered capillary trapping using proxy fluids, but due to limited beam-time availability we were unable to apply our high-pressure CO2 setup to sufficient variation in fluid properties, and initial scCO2 connectivity. New data will also allow us to test, calibrate and apply our LB models to reservoir conditions beyond those that are currently feasible experimentally. Such experiments and simulations will also allow us to provide information how suitable proxy fluids are for the scCO2/brine system. We believe it would be worthwhile to pursue the following new research questions: 1. What are the fundamental differences in the physics underlying capillary trapping at ambient vs. supercritical conditions? 2. Do newly developed pore-scale trapping interactions and relations ...

Book Optimization of Geological Environments for Carbon Dioxide Disposal in Saline Aquifers in the United States  Part Two

Download or read book Optimization of Geological Environments for Carbon Dioxide Disposal in Saline Aquifers in the United States Part Two written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second part of several parts of a collection of reports on this topic.

Book Analytical Modeling of CO2 Migration in Saline Aquifers for Geological CO2 Storage

Download or read book Analytical Modeling of CO2 Migration in Saline Aquifers for Geological CO2 Storage written by Christopher William MacMinn and published by . This book was released on 2008 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: Injection of carbon dioxide into geological formations for long-term storage is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Given the environmental and health risks associated with leakage of CO2 from such a storage site, it is critical to ensure that injected CO2 remain trapped underground for the foreseeable future. Careful site selection and effective injection methods are the two primary means of addressing this concern, and an accurate understanding of the subsurface spreading and migration of the CO2 plume during and after injection is essential for both purposes. It is well known that some CO2 will be trapped in the pore space of the aquifer rock as the plume migrates and spreads; this phenomenon, known as capillary trapping, is an ideal mechanism for geological CO2 storage because the trapped gas is immobile and distributed over a large area, greatly decreasing the risk of leakage and enhancing the effectiveness of slower, chemical trapping mechanisms. Here, we present an analytical model for the post-injection spreading of a plume of CO2 in a saline aquifer, both with and without capillary trapping. We solve the governing equation both analytically and numerically, and a comparison of the results for two different initial plume shapes demonstrates the importance of accounting for the true initial plume shape when capillary-trapping effects are considered. We nd that the plume volume converges to a self-similar, power-law trend at late times for any initial shape, but that the plume volume at the onset of this late-time behavior depends strongly on the initial shape even for weakly trapping systems.

Book Negative Emissions Technologies and Reliable Sequestration

Download or read book Negative Emissions Technologies and Reliable Sequestration written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-08 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.