Download or read book Machine Learning Approach for Cloud Data Analytics in IoT written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2021-07-14 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
Download or read book Optimization in Machine Learning and Applications written by Anand J. Kulkarni and published by Springer Nature. This book was released on 2019-11-29 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.
Download or read book Machine Learning and Optimization Models for Optimization in Cloud written by Punit Gupta and published by CRC Press. This book was released on 2022-02-27 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Models for Optimization in Cloud’s main aim is to meet the user requirement with high quality of service, least time for computation and high reliability. With increase in services migrating over cloud providers, the load over the cloud increases resulting in fault and various security failure in the system results in decreasing reliability. To fulfill this requirement cloud system uses intelligent metaheuristic and prediction algorithm to provide resources to the user in an efficient manner to manage the performance of the system and plan for upcoming requests. Intelligent algorithm helps the system to predict and find a suitable resource for a cloud environment in real time with least computational complexity taking into mind the system performance in under loaded and over loaded condition. This book discusses the future improvements and possible intelligent optimization models using artificial intelligence, deep learning techniques and other hybrid models to improve the performance of cloud. Various methods to enhance the directivity of cloud services have been presented which would enable cloud to provide better services, performance and quality of service to user. It talks about the next generation intelligent optimization and fault model to improve security and reliability of cloud. Key Features · Comprehensive introduction to cloud architecture and its service models. · Vulnerability and issues in cloud SAAS, PAAS and IAAS · Fundamental issues related to optimizing the performance in Cloud Computing using meta-heuristic, AI and ML models · Detailed study of optimization techniques, and fault management techniques in multi layered cloud. · Methods to improve reliability and fault in cloud using nature inspired algorithms and artificial neural network. · Advanced study of algorithms using artificial intelligence for optimization in cloud · Method for power efficient virtual machine placement using neural network in cloud · Method for task scheduling using metaheuristic algorithms. · A study of machine learning and deep learning inspired resource allocation algorithm for cloud in fault aware environment. This book aims to create a research interest & motivation for graduates degree or post-graduates. It aims to present a study on optimization algorithms in cloud for researchers to provide them with a glimpse of future of cloud computing in the era of artificial intelligence.
Download or read book Handbook of Research on Machine Learning Enabled IoT for Smart Applications Across Industries written by Goel, Neha and published by IGI Global. This book was released on 2023-07-03 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) and the internet of things (IoT) are the top technologies used by businesses to increase efficiency, productivity, and competitiveness in this fast-paced digital era transformation. ML is the key tool for fast processing and decision making applied to smart city applications and next-generation IoT devices, which require ML to satisfy their working objective. IoT technology has proven efficient in solving many real-world problems, and ML algorithms combined with IoT means the fusion of product and intelligence to achieve better automation, efficiency, productivity, and connectivity. The Handbook of Research on Machine Learning-Enabled IoT for Smart Applications Across Industries highlights the importance of ML for IoT’s success and diverse ML-powered IoT applications. This book addresses the problems and challenges in energy, industry, and healthcare and solutions proposed for ML-enabled IoT and new algorithms in ML. It further addresses their accuracy for existing real-time applications. Covering topics such as agriculture, pattern recognition, and smart applications, this premier reference source is an essential resource for engineers, scientists, educators, students, researchers, and academicians.
Download or read book Proceedings of the International Conference on Applications of Machine Intelligence and Data Analytics ICAMIDA 2022 written by Sharvari Tamane and published by Springer Nature. This book was released on 2023-05-01 with total page 1027 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an open access book. As on date, huge volumes of data are being generated through sensors, satellites, and simulators. Modern research on data analytics and its applications reveal that several algorithms are being designed and developed to process these datasets, either through the use of sequential and parallel processes. In the current scenario of Industry 4.0, data analytics, artificial intelligence and machine learning are being used to support decisions in space and time. Further, the availability of Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) have enabled to processing of these datasets. Some of the applications of Artificial Intelligence, Machine Learning and Data Analytics are in the domains of Agriculture, Climate Change, Disaster Prediction, Automation in Manufacturing, Intelligent Transportation Systems, Health Care, Retail, Stock Market, Fashion Design, etc. The international conference on Applications of Machine Intelligence and Data Analytics aims to bring together faculty members, researchers, scientists, and industry people on a common platform to exchange ideas, algorithms, knowledge based on processing hardware and their respective application programming interfaces (APIs).
Download or read book Dynamic Pricing and Automated Resource Allocation for Complex Information Services written by Michael Schwind and published by Springer Science & Business Media. This book was released on 2007-04-24 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops allocation mechanisms that aim to ensure an efficient resource allocation in modern IT-services. Recent methods of artificial intelligence, such as neural networks and reinforcement learning, and nature-oriented optimization methods, such as genetic algorithms and simulated annealing, are advanced and applied to allocation processes in distributed IT-infrastructures, or grid systems.
Download or read book Proceedings of International Conference on Recent Trends in Machine Learning IoT Smart Cities and Applications written by Vinit Kumar Gunjan and published by Springer Nature. This book was released on 2020-10-17 with total page 998 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected research papers presented at the International Conference on Recent Trends in Machine Learning, IOT, Smart Cities & Applications (ICMISC 2020), held on 29–30 March 2020 at CMR Institute of Technology, Hyderabad, Telangana, India. Discussing current trends in machine learning, Internet of things, and smart cities applications, with a focus on multi-disciplinary research in the area of artificial intelligence and cyber-physical systems, this book is a valuable resource for scientists, research scholars and PG students wanting formulate their research ideas and find the future directions in these areas. Further, it serves as a reference work anyone wishing to understand the latest technologies used by practicing engineers around the globe.
Download or read book Elastic Optical Networks written by Víctor López and published by Springer. This book was released on 2016-06-13 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advances in the field of optical networks - specifically on research and applications in elastic optical networks (EON). The material reflects the authors’ extensive research and industrial activities and includes contributions from preeminent researchers and practitioners in optical networking. The authors discuss the new research and applications that address the issue of increased bandwidth demand due to disruptive, high bandwidth applications, e.g., video and cloud applications. The book also discusses issues with traffic not only increasing but becoming much more dynamic, both in time and direction, and posits immediate, medium, and long-term solutions throughout the text. The book is intended to provide a reference for network architecture and planning, communication systems, and control and management approaches that are expected to steer the evolution of EONs.
Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.
Download or read book The 8th International Conference on Advanced Machine Learning and Technologies and Applications AMLTA2022 written by Aboul Ella Hassanien and published by Springer Nature. This book was released on 2022-04-16 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th International Conference on Advanced Machine Learning Technologies and Applications, AMLTA 2022, held in Cairo, Egypt, during May 5-7, 2022. The 8th edition of AMLTA will be organized by the Scientific Research Group in Egypt (SRGE), Egypt, collaborating with Port Said University, Egypt, and VSB-Technical University of Ostrava, Czech Republic. AMLTA series aims to become the premier international conference for an in-depth discussion on the most up-to-date and innovative ideas, research projects, and practices in the field of machine learning technologies and their applications. The book covers current research on advanced machine learning technology, including deep learning technology, sentiment analysis, cyber-physical system, IoT, and smart cities informatics and AI against COVID-19, data mining, power and control systems, business intelligence, social media, digital transformation, and smart systems.
Download or read book Machine Learning Applications in Subsurface Energy Resource Management written by Srikanta Mishra and published by CRC Press. This book was released on 2022-12-27 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of machine learning (ML) techniques to understand hidden patterns and build data-driven predictive models from complex multivariate datasets is rapidly increasing in many applied science and engineering disciplines, including geo-energy. Motivated by these developments, Machine Learning Applications in Subsurface Energy Resource Management presents a current snapshot of the state of the art and future outlook for ML applications to manage subsurface energy resources (e.g., oil and gas, geologic carbon sequestration, and geothermal energy). Covers ML applications across multiple application domains (reservoir characterization, drilling, production, reservoir modeling, and predictive maintenance) Offers a variety of perspectives from authors representing operating companies, universities, and research organizations Provides an array of case studies illustrating the latest applications of several ML techniques Includes a literature review and future outlook for each application domain This book is targeted at practicing petroleum engineers or geoscientists interested in developing a broad understanding of ML applications across several subsurface domains. It is also aimed as a supplementary reading for graduate-level courses and will also appeal to professionals and researchers working with hydrogeology and nuclear waste disposal.
Download or read book Simulation and Analysis of Mathematical Methods in Real Time Engineering Applications written by T. Ananth Kumar and published by John Wiley & Sons. This book was released on 2021-09-08 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: SIMULATIONS AND ANALYSIS of Mathematical Methods Written and edited by a group of international experts in the field, this exciting new volume covers the state of the art of real-time applications of computer science using mathematics. This breakthrough edited volume highlights the security, privacy, artificial intelligence, and practical approaches needed by engineers and scientists in all fields of science and technology. It highlights the current research, which is intended to advance not only mathematics but all areas of science, research, and development, and where these disciplines intersect. As the book is focused on emerging concepts in machine learning and artificial intelligence algorithmic approaches and soft computing techniques, it is an invaluable tool for researchers, academicians, data scientists, and technology developers. The newest and most comprehensive volume in the area of mathematical methods for use in real-time engineering, this groundbreaking new work is a must-have for any engineer or scientist’s library. Also useful as a textbook for the student, it is a valuable contribution to the advancement of the science, both a working handbook for the new hire or student, and a reference for the veteran engineer.
Download or read book Advanced Computing Techniques for Optimization in Cloud written by H S Madhusudhan and published by CRC Press. This book was released on 2024-09-11 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the current trends in research and analysis of virtual machine placement in a cloud data center. It discusses the integration of machine learning models and metaheuristic approaches for placement techniques. Taking into consideration the challenges of energy-efficient resource management in cloud data centers, it emphasizes upon computing resources being suitably utilised to serve application workloads in order to reduce energy utilisation, while maintaining apt performance. This book provides information on fault-tolerant mechanisms in the cloud and provides an outlook on task scheduling techniques. Focuses on virtual machine placement and migration techniques for cloud data centers Presents the role of machine learning and metaheuristic approaches for optimisation in cloud computing services Includes application of placement techniques for quality of service, performance, and reliability improvement Explores data center resource management, load balancing and orchestration using machine learning techniques Analyses dynamic and scalable resource scheduling with a focus on resource management The text is for postgraduate students, professionals, and academic researchers working in the fields of computer science and information technology.
Download or read book Optimization Models written by Giuseppe C. Calafiore and published by Cambridge University Press. This book was released on 2014-10-31 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.
Download or read book Metaheuristics in Machine Learning Theory and Applications written by Diego Oliva and published by Springer Nature. This book was released on with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.
Download or read book Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control written by Zhang Ren and published by Springer Nature. This book was released on 2022-07-29 with total page 1902 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes original, peer-reviewed research papers from the 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control (CCSICC2021), held in Shenzhen, China on January 19-22, 2022. The topics covered include but are not limited to: reviews and discussions of swarm intelligence, basic theories on swarm intelligence, swarm communication and networking, swarm perception, awareness and location, swarm decision and planning, cooperative control, cooperative guidance, swarm simulation and assessment. The papers showcased here share the latest findings on theories, algorithms and applications in swarm intelligence and cooperative control, making the book a valuable asset for researchers, engineers, and university students alike.
Download or read book Machine Learning Techniques for Smart City Applications Trends and Solutions written by D. Jude Hemanth and published by Springer Nature. This book was released on 2022-09-19 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the application of different machine learning techniques to the sub-concepts of smart cities such as smart energy, transportation, waste management, health, infrastructure, etc. The focus of this book is to come up with innovative solutions in the above-mentioned issues with the purpose of alleviating the pressing needs of human society. This book includes content with practical examples which are easy to understand for readers. It also covers a multi-disciplinary field and, consequently, it benefits a wide readership including academics, researchers, and practitioners.