EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimization in Solving Elliptic Problems

Download or read book Optimization in Solving Elliptic Problems written by Eugene G. D'yakonov and published by CRC Press. This book was released on 2018-05-04 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detailed discussions of how asymptotically optimal algorithms may be applied to elliptic problems to obtain numerical solutions meeting certain specified requirements. Beginning with an outline of the fundamental principles of numerical methods, this book describes how to construct special modifications of classical finite element methods such that for the arising grid systems, asymptotically optimal iterative methods can be applied. Optimization in Solving Elliptic Problems describes the construction of computational algorithms resulting in the required accuracy of a solution and having a pre-determined computational complexity. Construction of asymptotically optimal algorithms is demonstrated for multi-dimensional elliptic boundary value problems under general conditions. In addition, algorithms are developed for eigenvalue problems and Navier-Stokes problems. The development of these algorithms is based on detailed discussions of topics that include accuracy estimates of projective and difference methods, topologically equivalent grids and triangulations, general theorems on convergence of iterative methods, mixed finite element methods for Stokes-type problems, methods of solving fourth-order problems, and methods for solving classical elasticity problems. Furthermore, the text provides methods for managing basic iterative methods such as domain decomposition and multigrid methods. These methods, clearly developed and explained in the text, may be used to develop algorithms for solving applied elliptic problems. The mathematics necessary to understand the development of such algorithms is provided in the introductory material within the text, and common specifications of algorithms that have been developed for typical problems in mathema

Book The Finite Element Method for Elliptic Problems

Download or read book The Finite Element Method for Elliptic Problems written by P.G. Ciarlet and published by Elsevier. This book was released on 1978-01-01 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.

Book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Download or read book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem written by Roland Glowinski and published by SIAM. This book was released on 2015-11-04 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Book Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations

Download or read book Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations written by Beatrice Riviere and published by SIAM. This book was released on 2008-12-18 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on three primal DG methods, covering both theory and computation, and providing the basic tools for analysis.

Book Constrained Optimization and Optimal Control for Partial Differential Equations

Download or read book Constrained Optimization and Optimal Control for Partial Differential Equations written by Günter Leugering and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.

Book Seventh Copper Mountain Conference on Multigrid Methods

Download or read book Seventh Copper Mountain Conference on Multigrid Methods written by and published by . This book was released on 1996 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Large Scale PDE Constrained Optimization

Download or read book Large Scale PDE Constrained Optimization written by Lorenz T. Biegler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.

Book Numerical Analysis and Its Applications

Download or read book Numerical Analysis and Its Applications written by Lubin Vulkov and published by Springer. This book was released on 2003-07-31 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the Second International Conference on Numerical Analysis and Its Applications, NAA 2000, held in Rousse, Bulgaria in June 2000.The 90 revised papers presented were carefully selected for inclusion in the book during the two rounds of inspection and reviewing. All current aspects of numerical analysis are addressed. Among the application fields covered are computational sciences and engineering, chemistry, physics, economics, simulation, etc.

Book Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Download or read book Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces written by Michael Ulbrich and published by SIAM. This book was released on 2011-07-28 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.

Book Shape Optimization Problems

Download or read book Shape Optimization Problems written by Hideyuki Azegami and published by Springer Nature. This book was released on 2020-09-30 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.

Book Frontiers in PDE Constrained Optimization

Download or read book Frontiers in PDE Constrained Optimization written by Harbir Antil and published by Springer. This book was released on 2018-10-12 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.

Book Finite Elements and Fast Iterative Solvers

Download or read book Finite Elements and Fast Iterative Solvers written by Howard Elman and published by OUP Oxford. This book was released on 2014-06-19 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Download or read book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem written by Roland Glowinski and published by SIAM. This book was released on 2015-11-04 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Book Formulation and Numerical Solution of Quantum Control Problems

Download or read book Formulation and Numerical Solution of Quantum Control Problems written by Alfio Borzi and published by SIAM. This book was released on 2017-07-06 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the Schr?dinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods. ??

Book Computational Optimization of Systems Governed by Partial Differential Equations

Download or read book Computational Optimization of Systems Governed by Partial Differential Equations written by Alfio Borzi and published by SIAM. This book was released on 2012-01-26 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a bridge between continuous optimization and PDE modelling and focuses on the numerical solution of the corresponding problems. Intended for graduate students in PDE-constrained optimization, it is also suitable as an introduction for researchers in scientific computing or optimization.

Book Optimal Design through the Sub Relaxation Method

Download or read book Optimal Design through the Sub Relaxation Method written by Pablo Pedregal and published by Springer. This book was released on 2016-09-01 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive guide to analyzing and solving optimal design problems in continuous media by means of the so-called sub-relaxation method. Though the underlying ideas are borrowed from other, more classical approaches, here they are used and organized in a novel way, yielding a distinct perspective on how to approach this kind of optimization problems. Starting with a discussion of the background motivation, the book broadly explains the sub-relaxation method in general terms, helping readers to grasp, from the very beginning, the driving idea and where the text is heading. In addition to the analytical content of the method, it examines practical issues like optimality and numerical approximation. Though the primary focus is on the development of the method for the conductivity context, the book’s final two chapters explore several extensions of the method to other problems, as well as formal proofs. The text can be used for a graduate course in optimal design, even if the method would require some familiarity with the main analytical issues associated with this type of problems. This can be addressed with the help of the provided bibliography.

Book Numerical Mathematics and Advanced Applications 2009

Download or read book Numerical Mathematics and Advanced Applications 2009 written by Gunilla Kreiss and published by Springer Science & Business Media. This book was released on 2010-10-19 with total page 900 pages. Available in PDF, EPUB and Kindle. Book excerpt: xxx