Download or read book Handbook of Computational Econometrics written by David A. Belsley and published by John Wiley & Sons. This book was released on 2009-08-18 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Computational Econometrics examines the state of the art of computational econometrics and provides exemplary studies dealing with computational issues arising from a wide spectrum of econometric fields including such topics as bootstrapping, the evaluation of econometric software, and algorithms for control, optimization, and estimation. Each topic is fully introduced before proceeding to a more in-depth examination of the relevant methodologies and valuable illustrations. This book: Provides self-contained treatments of issues in computational econometrics with illustrations and invaluable bibliographies. Brings together contributions from leading researchers. Develops the techniques needed to carry out computational econometrics. Features network studies, non-parametric estimation, optimization techniques, Bayesian estimation and inference, testing methods, time-series analysis, linear and nonlinear methods, VAR analysis, bootstrapping developments, signal extraction, software history and evaluation. This book will appeal to econometricians, financial statisticians, econometric researchers and students of econometrics at both graduate and advanced undergraduate levels.
Download or read book Portfolio Management with Heuristic Optimization written by Dietmar G. Maringer and published by Springer Science & Business Media. This book was released on 2006-07-02 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Portfolio Management with Heuristic Optimization consist of two parts. The first part (Foundations) deals with the foundations of portfolio optimization, its assumptions, approaches and the limitations when "traditional" optimization techniques are to be applied. In addition, the basic concepts of several heuristic optimization techniques are presented along with examples of how to implement them for financial optimization problems. The second part (Applications and Contributions) consists of five chapters, covering different problems in financial optimization: the effects of (linear, proportional and combined) transaction costs together with integer constraints and limitations on the initital endowment to be invested; the diversification in small portfolios; the effect of cardinality constraints on the Markowitz efficient line; the effects (and hidden risks) of Value-at-Risk when used the relevant risk constraint; the problem factor selection for the Arbitrage Pricing Theory.
Download or read book Numerical Methods and Optimization in Finance written by Manfred Gilli and published by Academic Press. This book was released on 2019-08-16 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.
Download or read book Advanced Statistical Methods for the Analysis of Large Data Sets written by Agostino Di Ciaccio and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theme of the meeting was “Statistical Methods for the Analysis of Large Data-Sets”. In recent years there has been increasing interest in this subject; in fact a huge quantity of information is often available but standard statistical techniques are usually not well suited to managing this kind of data. The conference serves as an important meeting point for European researchers working on this topic and a number of European statistical societies participated in the organization of the event. The book includes 45 papers from a selection of the 156 papers accepted for presentation and discussed at the conference on “Advanced Statistical Methods for the Analysis of Large Data-sets.”
Download or read book Optimizing Optimization written by Stephen Satchell and published by Academic Press. This book was released on 2009-09-19 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The practical aspects of optimization rarely receive global, balanced examinations. Stephen Satchell's nuanced assembly of technical presentations about optimization packages (by their developers) and about current optimization practice and theory (by academic researchers) makes available highly practical solutions to our post-liquidity bubble environment. The commercial chapters emphasize algorithmic elements without becoming sales pitches, and the academic chapters create context and explore development opportunities. Together they offer an incisive perspective that stretches toward new products, new techniques, and new answers in quantitative finance. - Presents a unique "confrontation" between software engineers and academics - Highlights a global view of common optimization issues - Emphasizes the research and market challenges of optimization software while avoiding sales pitches - Accentuates real applications, not laboratory results
Download or read book Handbook of Computational and Numerical Methods in Finance written by Svetlozar T. Rachev and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of numerical methods in finance has recently emerged as a new discipline at the intersection of probability theory, finance, and numerical analysis. The methods employed bridge the gap between financial theory and computational practice, and provide solutions for complex problems that are difficult to solve by traditional analytical methods. Although numerical methods in finance have been studied intensively in recent years, many theoretical and practical financial aspects have yet to be explored. This volume presents current research and survey articles focusing on various numerical methods in finance. The book is designed for the academic community and will also serve professional investors.
Download or read book Towards Advanced Data Analysis by Combining Soft Computing and Statistics written by Christian Borgelt and published by Springer. This book was released on 2012-08-29 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft computing, as an engineering science, and statistics, as a classical branch of mathematics, emphasize different aspects of data analysis. Soft computing focuses on obtaining working solutions quickly, accepting approximations and unconventional approaches. Its strength lies in its flexibility to create models that suit the needs arising in applications. In addition, it emphasizes the need for intuitive and interpretable models, which are tolerant to imprecision and uncertainty. Statistics is more rigorous and focuses on establishing objective conclusions based on experimental data by analyzing the possible situations and their (relative) likelihood. It emphasizes the need for mathematical methods and tools to assess solutions and guarantee performance. Combining the two fields enhances the robustness and generalizability of data analysis methods, while preserving the flexibility to solve real-world problems efficiently and intuitively.
Download or read book Ibss Economics 2001 written by Compiled by the British Library of Political and Economic Science and published by Psychology Press. This book was released on 2002-12 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: IBSS is the essential tool for librarians, university departments, research institutions and any public or private institution whose work requires access to up-to-date and comprehensive knowledge of the social sciences.
Download or read book Computational Methods in Financial Engineering written by Erricos Kontoghiorghes and published by Springer Science & Business Media. This book was released on 2008-02-26 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational models and methods are central to the analysis of economic and financial decisions. Simulation and optimisation are widely used as tools of analysis, modelling and testing. The focus of this book is the development of computational methods and analytical models in financial engineering that rely on computation. The book contains eighteen chapters written by leading researchers in the area on portfolio optimization and option pricing; estimation and classification; banking; risk and macroeconomic modelling. It explores and brings together current research tools and will be of interest to researchers, analysts and practitioners in policy and investment decisions in economics and finance.
Download or read book Optimization Heuristics in Econometrics written by Peter Winker and published by Wiley-Blackwell. This book was released on 2001 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in statistics and econometrics offer themselves naturally to the use of optimization heuristics. Standard methods applied to highly complex problems often produce approximate results, of unknown quality, based on heavy assumptions. Optimization heuristic methods provide powerful results to many complex problems, combined with relatively simple implementation. The techniques used in optimization heurisitics can be applied to problems encountered in econometrics, statistics and operations research. * Offers a self-contained introduction to optimization heuristics in econometrics and statistics * Features many examples of optimization heuristic methods applied to real problems * Includes detailed coverage of the threshold accepting heuristic methods applied to real problems * Provides suggestions for further reading Split into three parts, the book opens with a general introduction to optimization in statistics and econometrics, followed by detailed discussion of a relatively new and very powerful optimization heuristic, threshold accepting. The final part consists of many applications of the methods described earlier, encompassing experimental design, model selection, aggregation of time series, and censored quantile regression models. Those researching and working in econometrics, statistics and operations research are given the tools to apply optimization heuristic methods to real problems in their work. Postgraduate students of statistics and econometrics will find the book provides a good introduction to optimization heuristic methods.
Download or read book Handbook on Information Technology in Finance written by Detlef Seese and published by Springer Science & Business Media. This book was released on 2008-05-27 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook contains surveys of state-of-the-art concepts, systems, applications, best practices as well as contemporary research in the intersection between IT and finance. Included are recent trends and challenges, IT systems and architectures in finance, essential developments and case studies on management information systems, and service oriented architecture modeling. The book shows a broad range of applications, e.g. in banking, insurance, trading and in non-financial companies. Essentially, all aspects of IT in finance are covered.
Download or read book Linear Statistical Inference and its Applications written by C. Radhakrishna Rao and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: "C. R. Rao would be found in almost any statistician's list of five outstanding workers in the world of Mathematical Statistics today. His book represents a comprehensive account of the main body of results that comprise modern statistical theory." -W. G. Cochran "[C. R. Rao is] one of the pioneers who laid the foundations of statistics which grew from ad hoc origins into a firmly grounded mathematical science." -B. Efrom Translated into six major languages of the world, C. R. Rao's Linear Statistical Inference and Its Applications is one of the foremost works in statistical inference in the literature. Incorporating the important developments in the subject that have taken place in the last three decades, this paperback reprint of his classic work on statistical inference remains highly applicable to statistical analysis. Presenting the theory and techniques of statistical inference in a logically integrated and practical form, it covers: * The algebra of vectors and matrices * Probability theory, tools, and techniques * Continuous probability models * The theory of least squares and the analysis of variance * Criteria and methods of estimation * Large sample theory and methods * The theory of statistical inference * Multivariate normal distribution Written for the student and professional with a basic knowledge of statistics, this practical paperback edition gives this industry standard new life as a key resource for practicing statisticians and statisticians-in-training.
Download or read book Optimal Learning written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2013-07-09 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business. This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication: Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduction to learning and a variety of policies for learning.
Download or read book Matheuristics written by Vittorio Maniezzo and published by Springer Science & Business Media. This book was released on 2009-09-18 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metaheuristics support managers in decision-making with robust tools that provide high-quality solutions to important applications in business, engineering, economics, and science in reasonable time frames, but finding exact solutions in these applications still poses a real challenge. However, because of advances in the fields of mathematical optimization and metaheuristics, major efforts have been made on their interface regarding efficient hybridization. This edited book will provide a survey of the state of the art in this field by providing some invited reviews by well-known specialists as well as refereed papers from the second Matheuristics workshop to be held in Bertinoro, Italy, June 2008. Papers will explore mathematical programming techniques in metaheuristics frameworks, and especially focus on the latest developments in Mixed Integer Programming in solving real-world problems.
Download or read book Spatial Statistics and Spatio Temporal Data written by Michael Sherman and published by John Wiley & Sons. This book was released on 2011-01-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the spatial or spatio-temporal context, specifying the correct covariance function is fundamental to obtain efficient predictions, and to understand the underlying physical process of interest. This book focuses on covariance and variogram functions, their role in prediction, and appropriate choice of these functions in applications. Both recent and more established methods are illustrated to assess many common assumptions on these functions, such as, isotropy, separability, symmetry, and intrinsic correlation. After an extensive introduction to spatial methodology, the book details the effects of common covariance assumptions and addresses methods to assess the appropriateness of such assumptions for various data structures. Key features: An extensive introduction to spatial methodology including a survey of spatial covariance functions and their use in spatial prediction (kriging) is given. Explores methodology for assessing the appropriateness of assumptions on covariance functions in the spatial, spatio-temporal, multivariate spatial, and point pattern settings. Provides illustrations of all methods based on data and simulation experiments to demonstrate all methodology and guide to proper usage of all methods. Presents a brief survey of spatial and spatio-temporal models, highlighting the Gaussian case and the binary data setting, along with the different methodologies for estimation and model fitting for these two data structures. Discusses models that allow for anisotropic and nonseparable behaviour in covariance functions in the spatial, spatio-temporal and multivariate settings. Gives an introduction to point pattern models, including testing for randomness, and fitting regular and clustered point patterns. The importance and assessment of isotropy of point patterns is detailed. Statisticians, researchers, and data analysts working with spatial and space-time data will benefit from this book as well as will graduate students with a background in basic statistics following courses in engineering, quantitative ecology or atmospheric science.
Download or read book Applied Survival Analysis written by David W. Hosmer, Jr. and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.
Download or read book Modern Applied U Statistics written by Jeanne Kowalski and published by John Wiley & Sons. This book was released on 2008-01-28 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely and applied approach to the newly discovered methods and applications of U-statistics Built on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utilizing a "learn by example" approach, this book provides an accessible, yet in-depth, treatment of U-statistics, as well as addresses key concepts in asymptotic theory by integrating translational and cross-disciplinary research. The authors begin with an introduction of the essential and theoretical foundations of U-statistics such as the notion of convergence in probability and distribution, basic convergence results, stochastic Os, inference theory, generalized estimating equations, as well as the definition and asymptotic properties of U-statistics. With an emphasis on nonparametric applications when and where applicable, the authors then build upon this established foundation in order to equip readers with the knowledge needed to understand the modern-day extensions of U-statistics that are explored in subsequent chapters. Additional topical coverage includes: Longitudinal data modeling with missing data Parametric and distribution-free mixed-effect and structural equation models A new multi-response based regression framework for non-parametric statistics such as the product moment correlation, Kendall's tau, and Mann-Whitney-Wilcoxon rank tests A new class of U-statistic-based estimating equations (UBEE) for dependent responses Motivating examples, in-depth illustrations of statistical and model-building concepts, and an extensive discussion of longitudinal study designs strengthen the real-world utility and comprehension of this book. An accompanying Web site features SAS? and S-Plus? program codes, software applications, and additional study data. Modern Applied U-Statistics accommodates second- and third-year students of biostatistics at the graduate level and also serves as an excellent self-study for practitioners in the fields of bioinformatics and psychosocial research.