EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimisation of the Performance of Thin Film Solar Cells

Download or read book Optimisation of the Performance of Thin Film Solar Cells written by B. Gandham and published by . This book was released on 1979 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimization of Film Morphology for the Performance of Organic Thin Film Solar Cells

Download or read book Optimization of Film Morphology for the Performance of Organic Thin Film Solar Cells written by Eric S. Muckley and published by . This book was released on 2013 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The power conversion efficiency of organic thin film solar cells must be improved before they can become commercially competitive alternatives to silicon-based photovoltaics. Exciton diffusion and charge carrier migration in organic films are strongly influenced by film morphology, which can be controlled by the substrate temperature during film growth. Zinc-phthalocyaninelbuckminsterfullerene bilayer film devices are fabricated with substrate temperatures between 25 C and 224 C and their solar cell performance is investigated here. The device open-circuit voltage, efficiency, and fill factor all exhibit peaks when films are grown at temperatures between 160 C and 180 C, which is likely a result of both the increase in shunt resistance and reduction in undesirable back diode effects which occur between l00 C and 180 C. The device performance can also be attributed to changes in the film crystallite size, roughness, and abundance of pinholes, as well as the occurrence of crystalline phase transitions which occur in both zinc-phthalocyanine and buckminsterfullerene between 150 C and 200 C. The unusually high open-circuit voltage (1.2 V), low short-circuit current density (0.03 mA/cm 2), and low device efficiency (0.04%) reported here are reminiscent of single layer phthalocyanine-based Schottky solar cells, which suggests that pinholes in bilayer film devices can effectively lead to the formation of Schottky diodes.

Book Solar Cells

    Book Details:
  • Author : Ahmed Mourtada Elseman
  • Publisher : BoD – Books on Demand
  • Release : 2021-09-22
  • ISBN : 1838810161
  • Pages : 489 pages

Download or read book Solar Cells written by Ahmed Mourtada Elseman and published by BoD – Books on Demand. This book was released on 2021-09-22 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.

Book Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices

Download or read book Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices written by J. E. Phillips and published by . This book was released on 2003 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes results achieved during a three-year subcontract to develop and understand thin-film solar cell technology associated to CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

Book Optimisation of Cu In Ga Se 1tn2 Thin Film Solar Cells and Modules for Low Irradiance Conditions

Download or read book Optimisation of Cu In Ga Se 1tn2 Thin Film Solar Cells and Modules for Low Irradiance Conditions written by Alessandro Virtuani and published by . This book was released on 2004 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Film Solar Cells From Earth Abundant Materials

Download or read book Thin Film Solar Cells From Earth Abundant Materials written by Subba Ramaiah Kodigala and published by Newnes. This book was released on 2013-11-14 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. - One of the first books exploring how to conduct research on thin film solar cells, including reducing costs - Detailed instructions on conducting research

Book Performance Optimization of Cu In1 x Gax  Se1 y Sy 2 Thin film Solar Cells by Characterization and Modelling of Temperature and Low light Behavior

Download or read book Performance Optimization of Cu In1 x Gax Se1 y Sy 2 Thin film Solar Cells by Characterization and Modelling of Temperature and Low light Behavior written by Hamsa Ahmed and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, the impact of structural variations of CIGS solar cells on their temperature coefficients, their stability, and their low light performance is studied. The layer modifications implemented for this study include different buffer, window layers and back contacts materials, and different double graded absorbers with change in their thickness and sodium post deposition treatment. It was demonstrated that the absorber layer exhibits the largest influence on the temperature dependence of the power output amongst all modified layers of the structure. The buffer and the absorber elemental composition showed to play an important role in the elemental interdiffusion and hence led to the creation of amphoteric defects that are light and temperature sensitive. Studies on the impact of different solar cell structures on the shift of the dominant recombination region at different light intensities were also performed.

Book Optimization  Design and Performance Analysis of Light Trapping Structures in Thin Film Solar Cells

Download or read book Optimization Design and Performance Analysis of Light Trapping Structures in Thin Film Solar Cells written by Shima Hajimirza and published by . This book was released on 2013 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are at the frontier of renewable energy technologies. Photovoltaic energy is clean, reusable, can be used anywhere in our solar system and can be very well integrated with power distribution grids and advanced technological systems. Thin film solar cells are a class of solar cells that offer low material cost, efficient fabrication process and compatibility with advanced electronics. However, as of now, the conversion efficiency of thin film solar cells is inferior to that of thick crystalline cells. Research efforts to improve the performance bottlenecks of thin film solar cells are highly motivated. A class of techniques towards this goal is called light trapping methods, which aims at improving the spectral absorptivity of a thin film cell by using surface texturing. The precise mathematical and physical characterization of these techniques is very challenging. This dissertation proposes a numerical and computational framework to optimize, design, and fabricate efficient light trapping structures in thin film solar cells, as well as methods to verify the fabricated designs. The numerical framework is based on the important "inverse optimization" technique, which is very is widely applicable to engineering design problems. An overview of the state-of-the-art thin film technology and light trapping techniques is presented in this thesis. The inverse problem is described in details with numerous examples in engineering applications, and is then applied to light trapping optimization. The proposed designs are studied for sensitivity analysis and fabrication error, as other aspects of the proposed computational framework. At the end, reports of fabrication, measurement and verification of some of the proposed designs are presented.

Book Performance Optimization of Cu In1 x Gax  Se1 y Sy 2 Thin film Solar Cells by Characterization and Modelling of Temperature and Low light Behavior

Download or read book Performance Optimization of Cu In1 x Gax Se1 y Sy 2 Thin film Solar Cells by Characterization and Modelling of Temperature and Low light Behavior written by Hamsa Ahmed and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, the impact of structural variations of CIGS solar cells on their temperature coefficients, their stability, and their low light performance is studied. The layer modifications implemented for this study include different buffer, window layers and back contacts materials, and different double graded absorbers with change in their thickness and sodium post deposition treatment. It was demonstrated that the absorber layer exhibits the largest influence on the temperature dependence of the power output amongst all modified layers of the structure. The buffer and the absorber elemental composition showed to play an important role in the elemental interdiffusion and hence led to the creation of amphoteric defects that are light and temperature sensitive. Studies on the impact of different solar cell structures on the shift of the dominant recombination region at different light intensities were also performed.

Book Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells

Download or read book Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells written by Shirish A. Pethe and published by . This book was released on 2010 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: With further optimization of the reaction process of the absorber layer as well as the other layers higher efficiencies can be achieved. The effect of sodium on the device performance is experimentally verified in this work. To the best of our knowledge the detrimental effect of excess sodium has been verified by experimental data and effort has been made to correlate the variation in PV parameter to theoretical models of effect of sodium. It has been a regular practice to deposit thin barrier layer prior to molybdenum deposition to reduce the micrononuniformities caused due to nonuniform out diffusion of sodium from the soda lime glass. However, it was proven in this work that an optimally thick barrier layer is necessary to reduce the out diffusion of sodium to negligible quantities and thus reduce the micrononuniformities. Molybdenum back contact deposition is a bottleneck in high volume manufacturing due to the current state of art where multi layer molybdenum film needs to be deposited to achieve the required properties. In order to understand and solve this problem experiments were carried out. The effect of working distance (distance between the target and the substrate) on film properties was studied and is presented in this work. During the course of this work efforts were taken to carry out a systematic and detailed study of some of the fundamental issues related to CIGS technology and particular for high volume manufacturing of CIGS PV modules and lay a good foundation for further improvement of PV performance of CIGS thin film solar cells prepared by the two step process of selenization and sulfurization of sputtered metallic precursors.

Book Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices

Download or read book Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices written by and published by . This book was released on 2000 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This final report describes results achieved under a 20-month NREL subcontract to develop and understand thin-film solar cell technology associated to CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE's long-range efficiency, reliability and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development and improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to device structure and module encapsulation.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book S  nac de Meilhan

    Book Details:
  • Author : Pierre Escoube
  • Publisher :
  • Release : 1984
  • ISBN :
  • Pages : 402 pages

Download or read book S nac de Meilhan written by Pierre Escoube and published by . This book was released on 1984 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for The Development of Polycrystalline Multijunctions

Download or read book Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for The Development of Polycrystalline Multijunctions written by and published by . This book was released on 2000 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

Book Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices   Annual Report  3 February 1997 2 February 1998

Download or read book Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Annual Report 3 February 1997 2 February 1998 written by and published by . This book was released on 1998 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes results achieved during phase I of a four-phase subcontract to develop and understand thin-film solar cell technology associated with CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for developing viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

Book Optimization of Process Parameters for Faster Deposition of CuIn1x  Gax  S2 and CuIn1x  Gax  Se2   y  Sy   Thin Film Solar Cells

Download or read book Optimization of Process Parameters for Faster Deposition of CuIn1x Gax S2 and CuIn1x Gax Se2 y Sy Thin Film Solar Cells written by Ashwani Kaul and published by . This book was released on 2012 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. Among all the thin film technologies, CuInGaSe2 (CIGS) thin film solar cells have achieved the highest efficiency. However, the high price of photovoltaic (PV) modules has been a major factor impeding their growth for terrestrial applications. Reduction in cost of PV modules can be realized by several ways including choosing scalable processes amenable to large area deposition, reduction in the materials consumption of active layers, and attaining faster deposition rates suitable for in-line processing. Selenization-sulfurization of sputtered metallic Cu-In-Ga precursors is known to be more amenable to large area deposition. Sputter-deposited molybdenum thin film is commonly employed as a back contact layer for CIGS solar cells. However, there are several difficulties in fabricating an optimum back contact layer. It is known that molybdenum thin films deposited at higher sputtering power and lower gas pressure exhibit better electrical conductivity. However, such films exhibit poor adhesion to the soda-lime glass substrate. On the other hand, films deposited at lower discharge power and higher pressure although exhibit excellent adhesion show lower electrical conductivity. Therefore, a multilayer structure is normally used so as to get best from the two deposition regimes. A multi-pass processing is not desirable in high volume production because it prolongs total production time and correspondingly increases the manufacturing cost. In order to make manufacturing compliant with an in-line deposition, it is justifiable having fewer deposition sequences. Thorough analysis of pressure and power relationship of film properties deposited at various parameters has been carried out. It has been shown that it is possible to achieve a molybdenum back contact of desired properties in a single deposition pass by choosing the optimum deposition parameters. It is also shown that the film deposited in a single pass is actually a composite structure. CIGS solar cells have successfully been completed on the developed single layer back contact with National Renewable Energy Laboratory (NREL) certified device efficiencies [greater than]11%. The optimization of parameters has been carried out in such a way that the deposition of back contact and metallic precursors can be carried out in identical pressure conditions which is essential for in-line deposition without a need for load-lock. It is know that the presence of sodium plays a very critical role during the growth of CIGS absorber layer and is beneficial for the optimum device performance. The effect of sodium location during the growth of the absorber layer has been studied so as to optimize its quantity and location in order to get devices with improved performance. NREL certified devices with efficiencies [greater than]12% have been successfully completed.