EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimal Structural Analysis

Download or read book Optimal Structural Analysis written by Ali Kaveh and published by John Wiley & Sons. This book was released on 2014-09-02 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of the highly acclaimed and successful first edition, deals primarily with the analysis of structural engineering systems, with applicable methods to other types of structures. The concepts presented in the book are not only relevant to skeletal structures but can equally be used for the analysis of other systems such as hydraulic and electrical networks. The book has been substantially revised to include recent developments and applications of the algebraic graph theory and matroids.

Book Optimal Analysis of Structures by Concepts of Symmetry and Regularity

Download or read book Optimal Analysis of Structures by Concepts of Symmetry and Regularity written by Ali Kaveh and published by Springer Science & Business Media. This book was released on 2013-05-16 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal analysis is defined as an analysis that creates and uses sparse, well-structured and well-conditioned matrices. The focus is on efficient methods for eigensolution of matrices involved in static, dynamic and stability analyses of symmetric and regular structures, or those general structures containing such components. Powerful tools are also developed for configuration processing, which is an important issue in the analysis and design of space structures and finite element models. Different mathematical concepts are combined to make the optimal analysis of structures feasible. Canonical forms from matrix algebra, product graphs from graph theory and symmetry groups from group theory are some of the concepts involved in the variety of efficient methods and algorithms presented. The algorithms elucidated in this book enable analysts to handle large-scale structural systems by lowering their computational cost, thus fulfilling the requirement for faster analysis and design of future complex systems. The value of the presented methods becomes all the more evident in cases where the analysis needs to be repeated hundreds or even thousands of times, as for the optimal design of structures by different metaheuristic algorithms. The book is of interest to anyone engaged in computer-aided analysis and design and software developers in this field. Though the methods are demonstrated mainly through skeletal structures, continuum models have also been added to show the generality of the methods. The concepts presented are not only applicable to different types of structures but can also be used for the analysis of other systems such as hydraulic and electrical networks.

Book Problems and Methods of Optimal Structural Design

Download or read book Problems and Methods of Optimal Structural Design written by Nikolai Vladimirovich Banichuk and published by Springer Science & Business Media. This book was released on 2013-03-13 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author offers a systematic and careful development of many aspects of structural optimization, particularly for beams and plates. Some of the results are new and some have appeared only in specialized Soviet journals, or as pro ceedings of conferences, and are not easily accessible to Western engineers and mathematicians. Some aspects of the theory presented here, such as optimiza tion of anisotropic properties of elastic structural elements, have not been con sidered to any extent by Western research engineers. The author's treatment is "classical", i.e., employing classical analysis. Classical calculus of variations, the complex variables approach, and the Kolosov Muskhelishvili theory are the basic techniques used. He derives many results that are of interest to practical structural engineers, such as optimum designs of structural elements submerged in a flowing fluid (which is of obvious interest in aircraft design, in ship building, in designing turbines, etc.). Optimization with incomplete information concerning the loads (which is the case in a great majority of practical design considerations) is treated thoroughly. For example, one can only estimate the weight of the traffic on a bridge, the wind load, the additional loads if a river floods, or possible earthquake loads.

Book Guide to Structural Optimization

Download or read book Guide to Structural Optimization written by Jasbir S. Arora and published by Amer Society of Civil Engineers. This book was released on 1997 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization methods are perceived to be at the heart of computer methods for designing engineering systems. With these optimization methods, the designer can evaluate more alternatives, resulting in a better and more cost-effective design. This guide describes the use of modern optimization methods with simple yet meaningful structural design examples. Optimum solutions are obtained and, where possible, compared with the solutions obtained using traditional design procedures.

Book Introduction to Structural Analysis   Design

Download or read book Introduction to Structural Analysis Design written by S. D. Rajan and published by John Wiley & Sons. This book was released on 2000-10-27 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introductory text on structural analysis and structural design. While the emphasis is on fundamental concepts, the ideas are reinforced through a combination of limited versatile classical techniques and numerical methods. Structural analysis and structural design including optimal design are strongly linked through design examples.

Book Examples in Structural Analysis  Second Edition

Download or read book Examples in Structural Analysis Second Edition written by William M.C. McKenzie and published by CRC Press. This book was released on 2013-12-20 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Examples in Structural Analysis uses a step-by-step approach and provides an extensive collection of fully worked and graded examples for a wide variety of structural analysis problems. It presents detailed information on the methods of solutions to problems and the results obtained. Also given within the text is a summary of each of the principal analysis techniques inherent in the design process and where appropriate, an explanation of the mathematical models used. The text emphasises that software should only be used if designers have the appropriate knowledge and understanding of the mathematical modelling, assumptions and limitations inherent in the programs they use. It establishes the use of hand-methods for obtaining approximate solutions during preliminary design and an independent check on the answers obtained from computer analyses. What’s New in the Second Edition: New chapters cover the development and use of influence lines for determinate and indeterminate beams, as well as the use of approximate analyses for indeterminate pin-jointed and rigid-jointed plane-frames. This edition includes a rewrite of the chapter on buckling instability, expands on beams and on the use of the unit load method applied to singly redundant frames. The x-y-z co-ordinate system and symbols have been modified to reflect the conventions adopted in the structural Eurocodes. William M. C. McKenzie is also the author of six design textbooks relating to the British Standards and the Eurocodes for structural design and one structural analysis textbook. As a member of the Institute of Physics, he is both a chartered engineer and a chartered physicist and has been involved in consultancy, research and teaching for more than 35 years.

Book Structural Optimization

Download or read book Structural Optimization written by Uri Kirsch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was developed while teaching a graduate course at several universities in the United States. Europe and Israel. during the last two decades. The purpose of the book is to introduce the fundamentals and applications of optimum structural design. Much work has been done in this area recently and many studies have been published. The book is an attempt to collect together selected topics of this literature and to present them in a unified approach. It meets the need for an introductory text covering the basic concepts of modem structural optimization. A previous book by the author on this subject ("Optimum Structural Design". published by McGraw-Hill New York in 1981 and by Maruzen Tokyo in 1983). has been used extensively as a text in many universities throughout the world. The present book reflects the rapid progress and recent developments in this area. A major difficulty in studying structural optimization is that integration of concepts used in several areas. such as structural analysis. numerical optimization and engineering design. is necessary in order to solve a specific problem. To facilitate the study of these topics. the book discusses in detail alternative problem formulations. the fundamentals of different optimization methods and various considerations related to structural design. The advantages and the limitations of the presented approaches are illustrated by numerous examples.

Book Mechanics of Optimal Structural Design

Download or read book Mechanics of Optimal Structural Design written by David W. A. Rees and published by John Wiley & Sons. This book was released on 2009-12-21 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a global climate where engineers are increasingly under pressure to make the most of limited resources, there are huge potential financial and environmental benefits to be gained by designing for minimum weight. With Mechanics of Optimal Structural Design, David Rees brings the original approach of weight optimization to the existing structural design literature, providing a methodology for attaining minimum weight of a range of structures under their working loads. He addresses the current gap in education between formal structural design teaching at undergraduate level and the practical application of this knowledge in industry, describing the analytical techniques that students need to understand before applying computational techniques that can be easy to misuse without this grounding. Shows engineers how to approach structural design for minimum weight in clear, concise terms Contains many new least-weight design techniques, taking into consideration different manners of loading and including new topics that have not previously been considered within the least-weight theme Considers the demands for least-weight road, air and space vehicles for the future Enhanced by illustrative worked examples to enlighten the theory, exercises at the end of each chapter that enable application of the theory covered, and an accompanying website with worked examples and solutions housed at www.wiley.com/go/rees The least-weight analyses of basic structural elements ensure a spread of interest with many applications in mechanical, civil, aircraft and automobile engineering. Consequently, this book fills the gap between the basic material taught at undergraduate level and other approaches to optimum design, for example computer simulations and the finite element method.

Book Elements of Structural Optimization

Download or read book Elements of Structural Optimization written by Raphael T. Haftka and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of structural optimization is still a relatively new field undergoing rapid changes in methods and focus. Until recently there was a severe imbalance between the enormous amount of literature on the subject, and the paucity of applications to practical design problems. This imbalance is being gradually redressed now. There is still no shortage of new publications, but there are also exciting applications of the methods of structural optimizations in the automotive, aerospace, civil engineering, machine design and other engineering fields. As a result of the growing pace of applications, research into structural optimization methods is increasingly driven by real-life problems. Most engineers who design structures employ complex general-purpose software packages for structural analysis. Often they do not have any access to the source the details of program, and even more frequently they have only scant knowledge of the structural analysis algorithms used in this software packages. Therefore the major challenge faced by researchers in structural optimization is to develop methods that are suitable for use with such software packages. Another major challenge is the high computational cost associated with the analysis of many complex real-life problems. In many cases the engineer who has the task of designing a structure cannot afford to analyze it more than a handful of times.

Book Advances in Structural Engineering   Optimization

Download or read book Advances in Structural Engineering Optimization written by Sinan Melih Nigdeli and published by Springer Nature. This book was released on 2020-12-04 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.

Book Computational Structural Analysis and Finite Element Methods

Download or read book Computational Structural Analysis and Finite Element Methods written by A. Kaveh and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory gained initial prominence in science and engineering through its strong links with matrix algebra and computer science. Moreover, the structure of the mathematics is well suited to that of engineering problems in analysis and design. The methods of analysis in this book employ matrix algebra, graph theory and meta-heuristic algorithms, which are ideally suited for modern computational mechanics. Efficient methods are presented that lead to highly sparse and banded structural matrices. The main features of the book include: application of graph theory for efficient analysis; extension of the force method to finite element analysis; application of meta-heuristic algorithms to ordering and decomposition (sparse matrix technology); efficient use of symmetry and regularity in the force method; and simultaneous analysis and design of structures.

Book Advanced Methods of Structural Analysis

Download or read book Advanced Methods of Structural Analysis written by Igor A. Karnovsky and published by Springer Nature. This book was released on 2021-03-16 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and significantly expanded edition contains a rigorous examination of key concepts, new chapters and discussions within existing chapters, and added reference materials in the appendix, while retaining its classroom-tested approach to helping readers navigate through the deep ideas, vast collection of the fundamental methods of structural analysis. The authors show how to undertake the numerous analytical methods used in structural analysis by focusing on the principal concepts, detailed procedures and results, as well as taking into account the advantages and disadvantages of each method and sphere of their effective application. The end result is a guide to mastering the many intricacies of the range of methods of structural analysis. The book differentiates itself by focusing on extended analysis of beams, plane and spatial trusses, frames, arches, cables and combined structures; extensive application of influence lines for analysis of structures; simple and effective procedures for computation of deflections; introduction to plastic analysis, stability, and free and forced vibration analysis, as well as some special topics. Ten years ago, Professor Igor A. Karnovsky and Olga Lebed crafted a must-read book. Now fully updated, expanded, and titled Advanced Methods of Structural Analysis (Strength, Stability, Vibration), the book is ideal for instructors, civil and structural engineers, as well as researches and graduate and post graduate students with an interest in perfecting structural analysis.

Book An Introduction to Structural Optimization

Download or read book An Introduction to Structural Optimization written by Peter W. Christensen and published by Springer Science & Business Media. This book was released on 2008-10-20 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emphasis on geometrical design problems, where the design is represented by continuously varying—frequently very many— variables, so-called ?rst order methods are central to the treatment. These methods are based on sensitivity analysis, i. e. , on establishing ?rst order derivatives for - jectives and constraints. The classical ?rst order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable appro- mations. It should be remarked that the classical and frequently used so-called op- mality criteria method is also of this kind. It may also be noted in this context that zero order methods such as response surface methods, surrogate models, neural n- works, genetic algorithms, etc. , essentially apply to different types of problems than the ones treated here and should be presented elsewhere.

Book Dynamic Analysis of Structures

Download or read book Dynamic Analysis of Structures written by John T. Katsikadelis and published by Academic Press. This book was released on 2020-06-27 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Analysis of Structures reflects the latest application of structural dynamics theory to produce more optimal and economical structural designs. Written by an author with over 37 years of researching, teaching and writing experience, this reference introduces complex structural dynamics concepts in a user-friendly manner. The author includes carefully worked-out examples which are solved utilizing more recent numerical methods. These examples pave the way to more accurately simulate the behavior of various types of structures. The essential topics covered include principles of structural dynamics applied to particles, rigid and deformable bodies, thus enabling the formulation of equations for the motion of any structure. Covers the tools and techniques needed to build realistic modeling of actual structures under dynamic loads Provides the methods to formulate the equations of motion of any structure, no matter how complex it is, once the dynamic model has been adopted Provides carefully worked-out examples that are solved using recent numerical methods Includes simple computer algorithms for the numerical solution of the equations of motion and respective code in FORTRAN and MATLAB

Book Fundamentals of Structural Analysis  2nd Edition

Download or read book Fundamentals of Structural Analysis 2nd Edition written by Roy, Sujit Kumar & Chakrabarty Subrata and published by S. Chand Publishing. This book was released on 2003 with total page 1004 pages. Available in PDF, EPUB and Kindle. Book excerpt: For B.E./B.Tech. in Civil Engineering and also useful for M.E./M.Tech. students. The book takes an integral look at structural engineering starting with fundamentals and ending with compurter analysis. This book is suitable for 5th, 6th and 7th semesters of undergraduate course. In this edition, a new chapter on plastic analysis has been added.A large number of examples have been worked out in the book so that students can master the subject by practising the examples and problems.

Book Structural Design Optimization Considering Uncertainties

Download or read book Structural Design Optimization Considering Uncertainties written by Yannis Tsompanakis and published by Taylor & Francis. This book was released on 2008-02-07 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainties play a dominant role in the design and optimization of structures and infrastructures. In optimum design of structural systems due to variations of the material, manufacturing variations, variations of the external loads and modelling uncertainty, the parameters of a structure, a structural system and its environment are not given, fixed coefficients, but random variables with a certain probability distribution. The increasing necessity to solve complex problems in Structural Optimization, Structural Reliability and Probabilistic Mechanics, requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest findings on structural optimization considering uncertainties. It contains selected contributions dealing with the use of probabilistic methods for the optimal design of different types of structures and various considerations of uncertainties. The first part is focused on reliability-based design optimization and the second part on robust design optimization. Comprising twenty-one, self-contained chapters by prominent authors in the field, it forms a complete collection of state-of-the-art theoretical advances and applications in the fields of structural optimization, structural reliability, and probabilistic computational mechanics. It is recommended to researchers, engineers, and students in civil, mechanical, naval and aerospace engineering and to professionals working on complicated costs-effective design problems.

Book Software Systems for Structural Optimization

Download or read book Software Systems for Structural Optimization written by H.R. Hörnlein and published by Birkhäuser. This book was released on 2013-03-07 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Herbert Hornlein, Klaus Schittkowski The finite element method (FEM) has been used successfully for many years to simulate and analyse mechanical structural problems. The results are accepted or rejected by means of comparison of state variables (stresses, displacements, natural frequencies etc.) and user requirements. In further analyses the design variables will be updated until the user specifications are met and the design is feasible. This is the primary aim of the design process. On this set of feasible designs, the additional requirement given by an objective function (e.g. weight, stiffness, efficiency, etc.) defines the structural optimization problem. In recent years more and more finite element based analysis systems were ex tended and offer now optimization modules. They proceed from the design model as defined for structural analysis, to perform an internal adaption of design pa rameters based on formal mathematical methods. Despite of many common features, there are significant differences in the selected optimization strategy, the current implementation and the numerical results.