EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Large Eddy Simulations of Turbulence

Download or read book Large Eddy Simulations of Turbulence written by M. Lesieur and published by Cambridge University Press. This book was released on 2005-08-22 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Book Optimal Large Eddy Simulation of Turbulence

Download or read book Optimal Large Eddy Simulation of Turbulence written by Robert deLancey Moser and published by . This book was released on 2004 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimal Large Eddy Simulation of Turbulence

Download or read book Optimal Large Eddy Simulation of Turbulence written by and published by . This book was released on 2004 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal LES modeling is a new approach to the development of subgrid models of turbulence. It has been found to produce accurate LES simulations when based on reliable statistical information. Now, the primary effort in optimal model development is the determination of this statistical information from theoretical considerations, with minimal empirical input. The validity of the theoretically determined statistics is being tested against experimental and DNS data. When small-scales are isotropic, Kolmogorov theory, the quasi-normal approximation and a dynamic procedure allow optimal models to be constructed with no empirical input. Such models have been found to perform well, though the dynamic procedure has not yet been tested in this context. Tests using channel flow DNS show that, except for a region very near the wall, the quasi-normal approximation is valid. Further, for the log-region, a representation for the anisotropy and inhomogeneity of the statistics is being developed. Thus, the above modeling approach can be adapted to near-wall turbulence, except for the thin viscous region. To handle this wall layer, a filtered boundary optimal LES model is being developed and tested.

Book Modeling Turbulence Using Optimal Large Eddy Simulation

Download or read book Modeling Turbulence Using Optimal Large Eddy Simulation written by Henry Chang and published by . This book was released on 2012 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most flows in nature and engineering are turbulent, and many are wall-bounded. Further, in turbulent flows, the turbulence generally has a large impact on the behavior of the flow. It is therefore important to be able to predict the effects of turbulence in such flows. The Navier-Stokes equations are known to be an excellent model of the turbulence phenomenon. In simple geometries and low Reynolds numbers, very accurate numerical solutions of the Navier-Stokes equations (direct numerical simulation, or DNS) have been used to study the details of turbulent flows. However, DNS of high Reynolds number turbulent flows in complex geometries is impractical because of the escalation of computational cost with Reynolds number, due to the increasing range of spatial and temporal scales. In Large Eddy Simulation (LES), only the large-scale turbulence is simulated, while the effects of the small scales are modeled (subgrid models). LES therefore reduces computational expense, allowing flows of higher Reynolds number and more complexity to be simulated. However, this is at the cost of the subgrid modeling problem. The goal of the current research is then to develop new subgrid models consistent with the statistical properties of turbulence. The modeling approach pursued here is that of "Optimal LES". Optimal LES is a framework for constructing models with minimum error relative to an ideal LES model. The multi-point statistics used as input to the optimal LES procedure can be gathered from DNS of the same flow. However, for an optimal LES to be truly predictive, we must free ourselves from dependence on existing DNS data. We have done this by obtaining the required statistics from theoretical models which we have developed. We derived a theoretical model for the three-point third-order velocity correlation for homogeneous, isotropic turbulence in the inertial range. This model is shown be a good representation of DNS data, and it is used to construct optimal quadratic subgrid models for LES of forced isotropic turbulence with results which agree well with theory and DNS. The model can also be filtered to determine the filtered two-point third-order correlation, which describes energy transfer among filtered (large) scales in LES. LES of wall-bounded flows with unresolved wall layers commonly exhibit good prediction of mean velocities and significant over-prediction of streamwise component energies in the near-wall region. We developed improved models for the nonlinear term in the filtered Navier-Stokes equation which result in better predicted streamwise component energies. These models involve (1) Reynolds decomposition of the nonlinear term and (2) evaluation of the pressure term, which removes the divergent part of the nonlinear models. These considerations significantly improved the performance of our optimal models, and we expect them to apply to other subgrid models as well.

Book Optimal Large eddy Simulation of Turbulent Channel Flow

Download or read book Optimal Large eddy Simulation of Turbulent Channel Flow written by Stefan Völker and published by . This book was released on 2001 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Shear Flows 8

    Book Details:
  • Author : Franz Durst
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642776744
  • Pages : 419 pages

Download or read book Turbulent Shear Flows 8 written by Franz Durst and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.

Book Large Eddy Simulation for Incompressible Flows

Download or read book Large Eddy Simulation for Incompressible Flows written by P. Sagaut and published by Springer Science & Business Media. This book was released on 2006 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Book Large Eddy Simulation for Incompressible Flows

Download or read book Large Eddy Simulation for Incompressible Flows written by P. Sagaut and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Book Implicit Large Eddy Simulation

Download or read book Implicit Large Eddy Simulation written by Fernando F. Grinstein and published by Cambridge University Press. This book was released on 2007-07-30 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical simulation of turbulent flows is a subject of great practical importance to scientists and engineers. The difficulty in achieving predictive simulations is perhaps best illustrated by the wide range of approaches that have been developed and are still being used by the turbulence modeling community. In this book the authors describe one of these approaches, Implicit Large Eddy Simulation (ILES). ILES is a relatively new approach that combines generality and computational efficiency with documented success in many areas of complex fluid flow. This book synthesizes the theoretical basis of the ILES methodology and reviews its accomplishments. ILES pioneers and lead researchers combine here their experience to present a comprehensive description of the methodology. This book should be of fundamental interest to graduate students, basic research scientists, as well as professionals involved in the design and analysis of complex turbulent flows.

Book Large Eddy Simulation for Compressible Flows

Download or read book Large Eddy Simulation for Compressible Flows written by Eric Garnier and published by Springer Science & Business Media. This book was released on 2009-08-11 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.

Book Quality and Reliability of Large Eddy Simulations

Download or read book Quality and Reliability of Large Eddy Simulations written by Johan Meyers and published by Springer Science & Business Media. This book was released on 2008-06-26 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, leading to an intricate and unpredictable situation. A full understanding of the interacting error dynamics in large-eddy simulations is still lacking. To ensure the reliability of large-eddy simulations for a wide range of industrial users, the development of clear standards for the evaluation, prediction, and control of simulation errors in LES is summoned. The workshop on Quality and Reliability of Large-Eddy Simulations, held October 22-24, 2007 in Leuven, Belgium (QLES2007), provided one of the first platforms specifically addressing these aspects of LES.

Book Direct and Large Eddy Simulation of Turbulence

Download or read book Direct and Large Eddy Simulation of Turbulence written by NA Schumann and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers presented to a EUROMECH-Colloquium held in Munich, September 30 to October 2, 1985. The Colloquium is number 199 in a series of colloquia inaugurated by the European Mechanics Committee. The meeting was jointly organized by the 'Lehrstuhl fur Stromungsmechanik' at the 'Technische Universitat Munchen' and the 'Institut fur Physik der Atmosphare' of the 'Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt' (DFVLR) in Oberpfaffenhofen. 'Direct' and 'large eddy simulation' are terms which denote two closely con nected methods of turbulence research. In a 'direct simulation' (DS), turbu lent motion is simulated by numerically integrating the Navier-Stokes equations in three-dimensional space and as a function of time. Besides ini tial and boundary conditions no physical simplifications are involved. Com puter resources limit the resolution in time and space, though simulations with an order of one million discrete points in space are feasible. The simu lated flow fields can be considered as true realizations of turbulent flow fields and analysed to answer questions on the basic behaviour of turbulence. Direct simulations are valid as long as all the excited scales remain within the band of resolved scales. This means that viscosity must be strong enough to damp out the not resolved scales or the simulation is restricted to a lim ited integration-time interval only. In summary, DS provides a tool to investigate turbulent motions from first principles at least for a finite band of scales.

Book Large Eddy Simulation for Incompressible Flows

Download or read book Large Eddy Simulation for Incompressible Flows written by Pierre Sagaut and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Book Mathematics of Large Eddy Simulation of Turbulent Flows

Download or read book Mathematics of Large Eddy Simulation of Turbulent Flows written by Luigi Carlo Berselli and published by Springer Science & Business Media. This book was released on 2006 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field

Book Finite volume Optimal Large eddy Simulation

Download or read book Finite volume Optimal Large eddy Simulation written by Paulo Seiji Kumon Zandonade and published by . This book was released on 2007 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finally, the dynamic optimal finite-volume LES model is applied to more a more complex flow, the temporally-growing shear layer. The results obtained with dynamic optimal finite-volume LES models are comparable with the DNS results of Rogers & Moser (1994), at a fraction of the cost. One expects the results from the shear layer to be representative of the performance of the optimal finitevolume LES models in bulk-flow turbulence.

Book Direct and Large Eddy Simulation I

Download or read book Direct and Large Eddy Simulation I written by Peter R. Voke and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.