EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimal Control of Geometric Partial Differential Equations

Download or read book Optimal Control of Geometric Partial Differential Equations written by Michael Hintermüller and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control problems for geometric (evolutionary) partial differential inclusions are considered. The focus is on problems which, in addition to the nonlinearity due to geometric evolution, contain optimization theoretic challenges because of non-smoothness. The latter might stem from energies containing non-smooth constituents such as obstacle-type potentials or terms modeling, e.g., pinning phenomena in microfluidics. Several techniques to remedy the resulting constraint degeneracy when deriving stationarity conditions are presented. A particular focus is on Yosida-type mollifications approximating the original degenerate problem by a sequence of nondegenerate nonconvex optimal control problems. This technique is also the starting point for the development of numerical solution schemes. In this context, also dual-weighted residual based error estimates are addressed to facilitate an adaptive mesh refinement. Concerning the underlying state model, sharp and diffuse interface formulations are discussed. While the former always allows for accurately tracing interfacial motion, the latter model may be dictated by the underlying physical phenomenon, where near the interface mixed phases may exist, but it may also be used as an approximate model for (sharp) interface motion. In view of the latter, (sharp interface) limits of diffuse interface models are addressed. For the sake of presentation, this exposition confines itself to phase field type diffuse interface models and, moreover, develops the optimal control of either of the two interface models along model applications. More precisely, electro-wetting on dielectric is used in the sharp interface context, and the control of multiphase fluids involving spinodal decomposition highlights the phase field technique. Mathematically, the former leads to a Hele-Shaw flow with geometric boundary conditions involving a complementarity system due to contact line pinning, and the latter gives rise to a Cahn-Hilliard Navier-Stokes model including a non-smooth obstacle type potential leading to a variational inequality constraint.

Book Geometric Partial Differential Equations   Part 2

Download or read book Geometric Partial Differential Equations Part 2 written by Andrea Bonito and published by Elsevier. This book was released on 2021-01-26 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Besides their intrinsic mathematical interest, geometric partial differential equations (PDEs) are ubiquitous in many scientific, engineering and industrial applications. They represent an intellectual challenge and have received a great deal of attention recently. The purpose of this volume is to provide a missing reference consisting of self-contained and comprehensive presentations. It includes basic ideas, analysis and applications of state-of-the-art fundamental algorithms for the approximation of geometric PDEs together with their impacts in a variety of fields within mathematics, science, and engineering. About every aspect of computational geometric PDEs is discussed in this and a companion volume. Topics in this volume include stationary and time-dependent surface PDEs for geometric flows, large deformations of nonlinearly geometric plates and rods, level set and phase field methods and applications, free boundary problems, discrete Riemannian calculus and morphing, fully nonlinear PDEs including Monge-Ampere equations, and PDE constrained optimization Each chapter is a complete essay at the research level but accessible to junior researchers and students. The intent is to provide a comprehensive description of algorithms and their analysis for a specific geometric PDE class, starting from basic concepts and concluding with interesting applications. Each chapter is thus useful as an introduction to a research area as well as a teaching resource, and provides numerous pointers to the literature for further reading The authors of each chapter are world leaders in their field of expertise and skillful writers. This book is thus meant to provide an invaluable, readable and enjoyable account of computational geometric PDEs

Book Geometric Optimal Control

    Book Details:
  • Author : Heinz Schättler
  • Publisher : Springer Science & Business Media
  • Release : 2012-06-26
  • ISBN : 1461438349
  • Pages : 652 pages

Download or read book Geometric Optimal Control written by Heinz Schättler and published by Springer Science & Business Media. This book was released on 2012-06-26 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schättler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.

Book Optimal Control of Partial Differential Equations Involving Pointwise State Constraints  Regularization and Applications

Download or read book Optimal Control of Partial Differential Equations Involving Pointwise State Constraints Regularization and Applications written by Irwin Yousept and published by Cuvillier Verlag. This book was released on 2008 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Differential Geometric Methods in the Control of Partial Differential Equations

Download or read book Differential Geometric Methods in the Control of Partial Differential Equations written by Robert Gulliver and published by American Mathematical Soc.. This book was released on 2000 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected papers that were presented at the AMS-IMS-SIAM Joint Summer Research Conference on "Differential Geometric Methods in the Control of Partial Differential Equations", which was held at the University of Colorado in Boulder in June 1999. The aim of the conference was to explore the infusion of differential-geometric methods into the analysis of control theory of partial differential equations, particularly in the challenging case of variable coefficients, where the physical characteristics of the medium vary from point to point. While a mutually profitable link has been long established, for at least 30 years, between differential geometry and control of ordinary differential equations, a comparable relationship between differential geometry and control of partial differential equations (PDEs) is a new and promising topic. Very recent research, just prior to the Colorado conference, supported the expectation that differential geometric methods, when brought to bear on classes of PDE modelling and control problems with variable coefficients, will yield significant mathematical advances. The papers included in this volume - written by specialists in PDEs and control of PDEs as well as by geometers - collectively support the claim that the aims of the conference are being fulfilled. In particular, they endorse the belief that both subjects-differential geometry and control of PDEs-have much to gain by closer interaction with one another. Consequently, further research activities in this area are bound to grow.

Book Optimal Control of Partial Differential Equations

Download or read book Optimal Control of Partial Differential Equations written by Andrea Manzoni and published by Springer Nature. This book was released on 2022-01-01 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a “hands-on” treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.

Book Optimal Control of Differential Equations

Download or read book Optimal Control of Differential Equations written by Nicolae H. Pavel and published by CRC Press. This book was released on 2020-08-18 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Based on the International Conference on Optimal Control of Differential Equations held recently at Ohio University, Athens, this Festschrift to honor the sixty-fifth birthday of Constantin Corduneanu an outstanding researcher in differential and integral equations provides in-depth coverage of recent advances, applications, and open problems relevant to mathematics and physics. Introduces new results as well as novel methods and techniques!"

Book Optimal Control of Coupled Systems of Partial Differential Equations

Download or read book Optimal Control of Coupled Systems of Partial Differential Equations written by Karl Kunisch and published by Springer Science & Business Media. This book was released on 2009-12-03 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains contributions originating from the 'Conference on Optimal Control of Coupled Systems of Partial Differential Equations', held at the 'Mathematisches Forschungsinstitut Oberwolfach' in March 2008. This work covers a range of topics such as controllability, optimality systems, model-reduction techniques, and fluid-structure interactions.

Book Optimal Control Problems for Partial Differential Equations on Reticulated Domains

Download or read book Optimal Control Problems for Partial Differential Equations on Reticulated Domains written by Peter I. Kogut and published by Springer Science & Business Media. This book was released on 2011-09-09 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for graduate students, researchers, and practitioners in mathematics and areas of engineering involving reticulated domains.

Book Optimal Control of Partial Differential Equations

Download or read book Optimal Control of Partial Differential Equations written by Fredi Tröltzsch and published by American Mathematical Soc.. This book was released on 2010 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. It includes topics on the existence of optimal solutions.

Book Optimal Control of Partial Differential Equations

Download or read book Optimal Control of Partial Differential Equations written by Karl-Heinz Hoffmann and published by Birkhäuser. This book was released on 2012-12-06 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of PDE-based control theory and the corresponding numerical algorithms to industrial problems have become increasingly important in recent years. This volume offers a wide spectrum of aspects of the discipline, and is of interest to mathematicians and scientists working in the field.

Book Optimal Control and Partial Differential Equations

Download or read book Optimal Control and Partial Differential Equations written by José Luis Menaldi and published by IOS Press. This book was released on 2001 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains more than sixty invited papers of international wellknown scientists in the fields where Alain Bensoussan's contributions have been particularly important: filtering and control of stochastic systems, variationnal problems, applications to economy and finance, numerical analysis... In particular, the extended texts of the lectures of Professors Jens Frehse, Hitashi Ishii, Jacques-Louis Lions, Sanjoy Mitter, Umberto Mosco, Bernt Oksendal, George Papanicolaou, A. Shiryaev, given in the Conference held in Paris on December 4th, 2000 in honor of Professor Alain Bensoussan are included.

Book Optimization and Control for Partial Differential Equations

Download or read book Optimization and Control for Partial Differential Equations written by Roland Herzog and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-03-07 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.

Book Optimal Control of Partial Differential Equations

Download or read book Optimal Control of Partial Differential Equations written by Karl-Heinz Hoffmann and published by Springer. This book was released on 1991 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Constrained Optimization and Optimal Control for Partial Differential Equations

Download or read book Constrained Optimization and Optimal Control for Partial Differential Equations written by Günter Leugering and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.

Book Partial Differential Equations On Multistructures

Download or read book Partial Differential Equations On Multistructures written by Felix Mehmeti and published by CRC Press. This book was released on 2001-04-10 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is based on lectures presented at the International Conference on Partial Differential Equations (PDEs) on Multistructures, held in Luminy, France. It contains advances in the field, compiling research on the analyses and applications of multistructures - including treatments of classical theories, specific characterizations and modellings of multistructures, and discussions on uses in physics, electronics, and biology.

Book Computation and Visualization of Geometric Partial Differential Equations

Download or read book Computation and Visualization of Geometric Partial Differential Equations written by Christopher Tiee and published by Lulu.com. This book was released on 2015-08-09 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an extended version of my PhD thesis which extends the theory of finite element exterior calculus (FEEC) to parabolic evolution equations. In the extended version, I explore some more precise visualizations of the defined quantities, as well as explain how the modern theory of functional analysis applies. In the main part, I extend the theory of approximating evolution equations in Euclidean space (using FEEC) to hypersurfaces. After these main results, I describe some possible extensions to nonlinear equations. A few appendices detail one of the original motivations for getting into this theory in the first place: canonical geometries given as steady state solutions and extremals of certain functionals.