EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book A Minicourse on Stochastic Partial Differential Equations

Download or read book A Minicourse on Stochastic Partial Differential Equations written by Robert C. Dalang and published by Springer Science & Business Media. This book was released on 2009 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.

Book S  minaire de Probabilit  s XLI

Download or read book S minaire de Probabilit s XLI written by Catherine Donati-Martin and published by Springer Science & Business Media. This book was released on 2008-05-07 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are as usual the main subject of the Séminaire, with contributions on Brownian motion (fractional or other), Lévy processes, martingales and probabilistic finance. Other probabilistic themes are also present: large random matrices, statistical mechanics. The contributions in this volume provide a sampling of recent results on these topics. All contributions with the exception of two are written in English language.

Book Long Range Dependence and Self Similarity

Download or read book Long Range Dependence and Self Similarity written by Vladas Pipiras and published by Cambridge University Press. This book was released on 2017-04-18 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.

Book New developments in Functional and Fractional Differential Equations and in Lie Symmetry

Download or read book New developments in Functional and Fractional Differential Equations and in Lie Symmetry written by Ioannis P. Stavroulakis and published by MDPI. This book was released on 2021-09-03 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows: Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.

Book An Introduction to Computational Stochastic PDEs

Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB® codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.

Book High Performance Computing in Finance

Download or read book High Performance Computing in Finance written by M. A. H. Dempster and published by CRC Press. This book was released on 2018-02-21 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.

Book Recent Developments in Computational Finance

Download or read book Recent Developments in Computational Finance written by Thomas Gerstner and published by World Scientific. This book was released on 2013 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational finance is an interdisciplinary field which joins financial mathematics, stochastics, numerics and scientific computing. Its task is to estimate as accurately and efficiently as possible the risks that financial instruments generate. This volume consists of a series of cutting-edge surveys of recent developments in the field written by leading international experts. These make the subject accessible to a wide readership in academia and financial businesses. The book consists of 13 chapters divided into 3 parts: foundations, algorithms and applications. Besides surveys of existing results, the book contains many new previously unpublished results.

Book Stochastic Differential Equations

Download or read book Stochastic Differential Equations written by Bernt Oksendal and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.

Book LNM

    LNM

    Book Details:
  • Author :
  • Publisher :
  • Release : 2008
  • ISBN :
  • Pages : 484 pages

Download or read book LNM written by and published by . This book was released on 2008 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents of 1-14 (1966/67-1978/79) in v. 15 (1979/80)

Book Stochastic Differential Equations

Download or read book Stochastic Differential Equations written by Peter H. Baxendale and published by World Scientific. This book was released on 2007 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.

Book Numerical Solution of Stochastic Differential Equations

Download or read book Numerical Solution of Stochastic Differential Equations written by Peter E. Kloeden and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Book Numerical Methods for Stochastic Partial Differential Equations with White Noise

Download or read book Numerical Methods for Stochastic Partial Differential Equations with White Noise written by Zhongqiang Zhang and published by Springer. This book was released on 2017-09-01 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2007 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Processes and Applications

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Book Analysis and Approximation of Rare Events

Download or read book Analysis and Approximation of Rare Events written by Amarjit Budhiraja and published by Springer. This book was released on 2019-08-10 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents broadly applicable methods for the large deviation and moderate deviation analysis of discrete and continuous time stochastic systems. A feature of the book is the systematic use of variational representations for quantities of interest such as normalized logarithms of probabilities and expected values. By characterizing a large deviation principle in terms of Laplace asymptotics, one converts the proof of large deviation limits into the convergence of variational representations. These features are illustrated though their application to a broad range of discrete and continuous time models, including stochastic partial differential equations, processes with discontinuous statistics, occupancy models, and many others. The tools used in the large deviation analysis also turn out to be useful in understanding Monte Carlo schemes for the numerical approximation of the same probabilities and expected values. This connection is illustrated through the design and analysis of importance sampling and splitting schemes for rare event estimation. The book assumes a solid background in weak convergence of probability measures and stochastic analysis, and is suitable for advanced graduate students, postdocs and researchers.

Book Recent Development In Stochastic Dynamics And Stochastic Analysis

Download or read book Recent Development In Stochastic Dynamics And Stochastic Analysis written by Jinqiao Duan and published by World Scientific. This book was released on 2010-02-08 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also to scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics.The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.