Download or read book X Ray Free Electron Laser written by Kiyoshi Ueda and published by MDPI. This book was released on 2018-07-04 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "X-Ray Free-Electron Laser" that was published in Applied Sciences
Download or read book Structures on Different Time Scales written by Theo Woike and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-03-05 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 1 of this work presents theory and methods to study the structure of condensed matter on different time scales. The authors cover the structure analysis by X-ray diffraction methods from crystalline to amorphous materials, from static-relaxed averaged structures to short-lived electronically excited structures, including detailed descriptions of the time-resolved experimental methods. Complementary, an overview of the theoretical description of condensed matter by static and time-dependent density functional theory is given, starting from the fundamental quantities that can be obtained by these methods through to the recent challenges in the description of time dependent phenomena such as optical excitations. Contents Static structural analysis of condensed matter: from single-crystal to amorphous DFT calculations of solids in the ground state TDDFT, excitations, and spectroscopy Time-resolved structural analysis: probing condensed matter in motion Ultrafast science
Download or read book Dynamics and Kinetics in Structural Biology written by Keith Moffat and published by John Wiley & Sons. This book was released on 2023-10-19 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamics and Kinetics in Structural Biology Understand the latest experimental tools in structural biology with this pioneering work Structural biology seeks to understand the chemical mechanisms and functions of biological molecules, such as proteins, based on their atomic structures. Until recently, these structures have been studied only statically, using procedures which deliberately freeze atomic motion. However, freezing eliminates the rapid structural motions so essential to biological activity and function; the molecules are inactive. But with the recent development of X-ray free electron laser (XFEL) sources, efforts to conduct dynamic experiments have expanded using the principles of dynamics and kinetics to capture active biological molecules as they function. Dynamics and Kinetics in Structural Biology promotes the development of these experiments and their successful application. It grounds readers in the foundational principles of dynamics and kinetics; proceeds through extended discussions of experimental procedures and data analysis techniques; and explores experimental frontiers in structural dynamics. The book will aid researchers to gather and interpret cutting-edge data on the dynamic structure of biological molecules, under conditions where they retain their biological functions. Dynamics and Kinetics in Structural Biology offers readers: Authorship by founding figures in the field In-depth presentation of time-resolved X-ray crystallography, solution scattering, and more A pioneering contribution to a rapidly developing field of study Dynamics and Kinetics in Structural Biology is essential reading for graduate students, scientists, researchers and industry professionals engaged in structural studies of biological systems. Industry professionals considering dynamic studies in the development of new product lines will also benefit.
Download or read book Reviews Of Accelerator Science And Technology Volume 9 Technology And Applications Of Advanced Accelerator Concepts written by Alexander Wu Chao and published by World Scientific. This book was released on 2017-02-20 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the implication of bringing two different communities — accelerator and laser — to join forces and work together. It will have profound impact on the future of our field.Also included are two special articles, one on 'Particle Accelerators in China' which gives a comprehensive overview of the rapidly growing accelerator community in China. The other features the person-of-the-issue who was well-known nuclear physicist Jerome Lewis Duggan, a pioneer and founder of a huge community of industrial and medical accelerators in the US.
Download or read book An Introduction to Synchrotron Radiation written by Philip Willmott, PhD and published by John Wiley & Sons. This book was released on 2019-02-27 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The updated guide to the fundamental concepts, techniques and applications of synchrotron radiation and its applications in this rapidly developing field Synchrotron light is recognized as an invaluable research tool by a broad spectrum of scientists, ranging from physicists to biologists and archaeologists. The comprehensively revised second edition of An Introduction to Synchrotron Radiation offers a guide to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter and the application of synchrotron light in x-ray scattering, spectroscopy, and imaging. The author, a noted expert in the field, reviews the fundamentals of important experimental methods, and explores the most recent technological advances in both the latest generation of x-ray sources and x-ray instrumentation. Designed to be an accessible resource, the book contains full-colour illustrations of the underlying physics and experimental applications, as well as the most commonly-used synchrotron techniques. In particular, the updated second edition now includes: In-depth descriptions of the latest x-ray-source technologies, notably diffraction-limited storage rings and x-ray free-electron lasers The latest advances in instrumentation, x-ray optics, and experimental methods in synchrotron radiation The most recent developments in macromolecular crystallography, time-resolved studies, and imaging techniques A comprehensive set of problems for each chapter, plus their ideal solutions in the appendices. Written for undergraduate and postgraduate students from all areas of the natural and physical sciences, An Introduction to Synchrotron Radiation, Second Edition is an invaluable up-to-date reference source in this highly multidisciplinary field. PowerPoint slides of all the figures within the text are available for download, for instructors and users of this book, at http://booksupport.wiley.com
Download or read book Synchrotron Radiation and Free Electron Lasers written by Kwang-Je Kim and published by Cambridge University Press. This book was released on 2017-03-23 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preliminary concepts -- Synchrotron radiation -- Basic FEL physics -- 1D FEL analysis -- 3D FEL analysis -- Harmonic generation in high-gain FELs -- FEL oscillators and coherent hard X-rays -- Practical considerations and experimental results for high-gain FELs
Download or read book Journal of the Physical Society of Japan written by and published by . This book was released on 2015 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Physics of and Science with X Ray Free Electron Lasers written by J. Hastings and published by IOS Press. This book was released on 2020-12-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many X-Ray Free-Electron Lasers (X-FELs) have been designed, built and commissioned since the first lasing of the Linac Coherent Light Source in the hard and soft X-ray regions, and great progress has been made in improving their performance and extending their capabilities. Meanwhile, experimental techniques to exploit the unique properties of X-FELs to explore atomic and molecular systems of interest to physics, chemistry, biology and the material sciences have also been developed. As a result, our knowledge of atomic and molecular science has been greatly extended. Nevertheless, there is still much to be accomplished, and the potential for discovery with X-FELs is still largely unexplored. The next generation of scientists will need to be well versed in both particle beams/FEL physics and X-ray photon science. This book presents material from the Enrico Fermi summer school: Physics of and Science with X-Ray Free-Electron Lasers, held at the Enrico Fermi International School of Physics in Varenna, Italy, from 26 June - 1 July 2017. The lectures presented at the school were aimed at introducing graduate students and young scientists to this fast growing and exciting scientific area, and subjects covered include basic accelerator and FEL physics, as well as an introduction to the main research topics in X-FEL-based biology, atomic molecular optical science, material sciences, high-energy density physics and chemistry. Bridging the gap between accelerator/FEL physicists and scientists from other disciplines, the book will be of interest to all those working in the field.
Download or read book Handbook of Condensation Thermoplastic Elastomers written by Stoyko Fakirov and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reporting on the work of an international team of scientists actively involved in the study of thermoplastic elastomers (TPE) based on polyesters, polyamides, and polyurethanes, this book is the first to provide a detailed description of condensation TPE with close attention paid to polyamide-based systems. Reflecting the increasing importance of TPE as engineering plastics, the authors discuss the widened application opportunities by preparing systems with various chemical compositions and molecular structures as (semi-) interpenetrating networks. The contents also cover the chemical aspects, physical structure and properties, life cycle assessment, and recycling possibilities as well as such unique "smart" properties like the shape memory effect of the three classes of thermoplastic elastomers.
Download or read book Synchrotron Light Sources and Free Electron Lasers written by Eberhard J. Jaeschke and published by Springer. This book was released on 2016-05-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.
Download or read book Nanoscale Photonic Imaging written by Tim Salditt and published by Springer Nature. This book was released on 2020-06-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
Download or read book Laser Plasma Interactions written by Dino A. Jaroszynski and published by CRC Press. This book was released on 2009-03-27 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap
Download or read book X ray Standing Wave Technique The Principles And Applications written by Jorg Zegenhagen and published by World Scientific. This book was released on 2013-01-30 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: The X-ray standing wave (XSW) technique is an X-ray interferometric method combining diffraction with a multitude of spectroscopic techniques. It is extremely powerful for obtaining information about virtually all properties of surfaces and interfaces on the atomic scale. However, as with any other technique, it has strengths and limitations. The proper use and necessary understanding of this method requires knowledge in quite different fields of physics and technology. This volume presents comprehensively the theoretical background, technical requirements and distinguished experimental highlights of the technique. Containing contributions from the most prominent experts of the technique, such as Andre Authier, Boris Batterman, Michael J Bedzyk, Jene Golovchenko, Victor Kohn, Michail Kovalchuk, Gerhard Materlik and D Phil Woodruff, the book equips scientists with all the necessary information and knowledge to understand and use the XSW technique in practically all applications.
Download or read book Macromolecular Crystallography written by Charles W. Carter and published by Gulf Professional Publishing. This book was released on 1997 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Accurate molecular structures is vital for rational drug design and for structure based functional studies directed toward the development of effective therapeutic agents and drugs. Crystallography can reliably predict structure, both in terms of folding and atomic details of bonding. * Phases * Map interpretation and refinement * Analysis and software.
Download or read book Femtosecond Laser Filamentation written by See Leang Chin and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book attempts to give a discussion of the physics and current and potential applications of the self-focusing of an intense femtosecond laser pulse in a tra- parent medium. Although self-focusing is an old subject of nonlinear optics, the consequence of self-focusing of intense femtosecond laser pulses is totally new and unexpected. Thus, new phenomena are observed, such as long range lam- tation, intensity clamping, white light laser pulse, self-spatial ltering, self-group phase locking, self-pulse compression, clean nonlinear uorescence, and so on. Long range propagation at high intensity, which is seemingly against the law of diffraction, is probably one of the most exciting consequences of this new sub- eld of nonlinear optics. Because the intensity inside the lament core is high, new ways of doing nonlinear optics inside the lament become possible. We call this lamentation nonlinear optics. We shall describe the generation of pulses at other wavelengths in the visible and ultraviolet (UV) starting from the near infrared pump pulse at 800 nm through four-wave-mixing and third harmonic generation, all in gases. Remotely sensing uorescence from the fragments of chemical and biological agents in all forms, gaseous, aerosol or solid, inside the laments in air is demonstrated in the labo- tory. The results will be shown in the last part of the book. Through analyzing the uorescence of gas molecules inside the lament, an unexpected physical process pertaining to the interaction of synchrotron radiation with molecules is observed.
Download or read book X Ray Diffraction Imaging of Biological Cells written by Masayoshi Nakasako and published by Springer. This book was released on 2018-03-29 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author describes the development of the experimental diffraction setup and structural analysis of non-crystalline particles from material science and biology. Recent advances in X-ray free electron laser (XFEL)-coherent X-ray diffraction imaging (CXDI) experiments allow for the structural analysis of non-crystalline particles to a resolution of 7 nm, and to a resolution of 20 nm for biological materials. Now XFEL-CXDI marks the dawn of a new era in structural analys of non-crystalline particles with dimensions larger than 100 nm, which was quite impossible in the 20th century. To conduct CXDI experiments in both synchrotron and XFEL facilities, the author has developed apparatuses, named KOTOBUKI-1 and TAKASAGO-6 for cryogenic diffraction experiments on frozen-hydrated non-crystalline particles at around 66 K. At the synchrotron facility, cryogenic diffraction experiments dramatically reduce radiation damage of specimen particles and allow tomography CXDI experiments. In addition, in XFEL experiments, non-crystalline particles scattered on thin support membranes and flash-cooled can be used to efficiently increase the rate of XFEL pulses. The rate, which depends on the number density of scattered particles and the size of X-ray beams, is currently 20-90%, probably the world record in XFEL-CXDI experiments. The experiment setups and results are introduced in this book. The author has also developed software suitable for efficiently processing of diffraction patterns and retrieving electron density maps of specimen particles based on the diffraction theory used in CXDI.
Download or read book Plasma Science written by National Academies of Sciences Engineering and Medicine and published by . This book was released on 2021-02-28 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.