EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optical Studies of Thermal and Electronic Properties of Quantum Cascade Lasers

Download or read book Optical Studies of Thermal and Electronic Properties of Quantum Cascade Lasers written by Alexander Joachim Barry Borak and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Optical and Thermal Properties of Quantum Cascade Lasers

Download or read book The Optical and Thermal Properties of Quantum Cascade Lasers written by Craig Anthony Evans and published by . This book was released on 2008 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Photonics in Mid infrared Quantum Cascade Lasers

Download or read book Nonlinear Photonics in Mid infrared Quantum Cascade Lasers written by Louise Jumpertz and published by Springer. This book was released on 2017-08-31 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry–Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.

Book Mid Infrared and Terahertz Quantum Cascade Lasers

Download or read book Mid Infrared and Terahertz Quantum Cascade Lasers written by Dan Botez and published by Cambridge University Press. This book was released on 2023-09-14 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how the rapidly expanding area of mid-infrared and terahertz photonics has been revolutionized in this comprehensive overview. State-of-the-art practical applications are supported by real-life examples and expert guidance. Also featuring fundamental theory enabling you to improve performance of both existing and future devices.

Book Design and Fabrication of Quantum Cascade Lasers and Light Emitting Devices

Download or read book Design and Fabrication of Quantum Cascade Lasers and Light Emitting Devices written by Mariano Troccoli (fisico) and published by . This book was released on 2000 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Cascade Lasers

    Book Details:
  • Author : Jérôme Faist
  • Publisher : Oxford University Press
  • Release : 2013-03-14
  • ISBN : 0198528248
  • Pages : 321 pages

Download or read book Quantum Cascade Lasers written by Jérôme Faist and published by Oxford University Press. This book was released on 2013-03-14 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the physics, fabrication technology, and applications of the quantum cascade laser.

Book Spectroscopic Applications of Terahertz Quantum Cascade Lasers

Download or read book Spectroscopic Applications of Terahertz Quantum Cascade Lasers written by Tasmim Alam and published by Cuvillier Verlag. This book was released on 2020-10-29 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers (QCLs) are attractive for high-resolution spectroscopy because they can provide high power and a narrow linewidth. They are particularly promising in the terahertz (THz) range since they can be used as local oscillators for heterodyne detection as well as transmitters for direct detection. However, THz QCL-based technologies are still under development and are limited by the lack of frequency tunability as well as the frequency and output power stability for free-running operation. In this dissertation, frequency tuning and linewidth of THz QCLs are studied in detail by using rotational spectroscopic features of molecular species. In molecular spectroscopy, the Doppler eff ect broadens the spectral lines of molecules in the gas phase at thermal equilibrium. Saturated absorption spectroscopy has been performed that allows for sub-Doppler resolution of the spectral features. One possible application is QCL frequency stabilization based on the Lamb dip. Since the tunability of the emission frequency is an essential requirement to use THz QCL for high-resolution spectroscopy, a new method has been developed that relies on near-infrared (NIR) optical excitation of the QCL rear-facet. A wide tuning range has been achieved by using this approach. The scheme is straightforward to implement, and the approach can be readily applied to a large class of THz QCLs. The frequency and output stability of the local oscillator has a direct impact on the performance and consistency of the heterodyne spectroscopy. A technique has been developed for a simultaneous stabilization of the frequency and output power by taking advantage of the frequency and power regulation by NIR excitation. The results presented in this thesis will enable the routine use of THz QCLs for spectroscopic applications in the near future.

Book Quantum Wells  Wires and Dots

Download or read book Quantum Wells Wires and Dots written by Paul Harrison and published by John Wiley & Sons. This book was released on 2011-09-26 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Wells, Wires and Dots, 3rd Edition is aimed at providing all the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. Completely revised and updated, this text is designed to lead the reader through a series of simple theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their own.

Book Spectroscopic Studies of Optical and Electronic Processes in Quantum Cascade Lasers

Download or read book Spectroscopic Studies of Optical and Electronic Processes in Quantum Cascade Lasers written by Randa Saad Ali Hassan and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Cascade Lasers Based on Intra cavity Frequency Mixing

Download or read book Quantum Cascade Lasers Based on Intra cavity Frequency Mixing written by Min Jang and published by . This book was released on 2012 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers (QCLs) operate due to population inversion on intersubband in unipolar mutiple-quantum-well (MQW) heterostructure. QCLs are considered one of the most flexible and powerful light semiconductor sources in the mid- and far-infrared (IR) wavelength range, covering most of the critical spectral regions relevant to IR applications. InGaAs/InAlAs/InP QCLs are the only semiconductor lasers capable of continuous wave (CW) operation at room temperature (RT) in the spectral range 3.4-12 micron. This dissertation details the development of RT QCLs based on passive nonlinear coupled-quantum-well structures monolithically integrated into mid-IR QCLs to provide a giant nonlinear response for the pumping frequency. The primary focus of short-wavelength approach in this dissertation is to develop of RT InGaAs/InAlAs/InP QCLs for lamda=2.5-3.7 micron region, based on quasi-phase-matched intracavity second harmonic generation (SHG) associated with intersubband transition. Intersubband optical transition can be engineered by the choice of quantum well and barrier thicknesses to provide the appropriate energy levels, optical dipole matrix elements, and electron scattering rates amongst other parameters. Thus, aside from their linear optical properties, resonant intersubband transitions in coupled QW's can also be designed to produce nonlinear optical medium with giant nonlinear optical susceptibilities. In long-wavelength region, at high temperature, the population inversion is reduced between the upper and lower laser levels due to the longitudinal optical (LO) phonon scattering of thermal carriers in the upper laser state and the thermal backfilling of carriers into the lower laser level from the injector state. This dissertation aims to improve an alternative approach for THz QCL sources based on intra-cavity difference frequency generation (DFG) in dual-wavelength mid-IR QCLs with a passive nonlinear structure, designed for giant optical nonlinearity. Further studies describe that Cerenkov DFG scheme allows for extraction of THz radiation along the whole length of the laser waveguide and provides directional THz emission in 1.2-4.5 THz range. An important requirement for many applications, like chemical sensing and molecular spectroscopy, is single-mode emission. We demonstrate single-mode RT DFG THz QCLs operation in 1-5 THz region by employing devices as integrated dual-period DFB lasers, where efficient solid state RT sources do not exist.

Book Quantum Cascade Lasers

Download or read book Quantum Cascade Lasers written by and published by . This book was released on 19?? with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design and Modeling of High Temperature Terahertz Quantum Cascade Lasers

Download or read book Design and Modeling of High Temperature Terahertz Quantum Cascade Lasers written by Benjamin Adams Burnett and published by . This book was released on 2016 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The portion of the electromagnetic spectrum between roughly 300 GHz and 10 THz is nicknamed the "THz Gap" because of the enormous difficulty encountered by researchers to devise practical sources covering it. Still, the quantum cascade laser (QCL) has emerged over recent years as the most promising approach to a practical source in the 1-5 THz range. First developed in the higher-frequency mid-IR, where they are now widely available, QCLs were later extended to the THz where a host of greater design challenges awaited. Lasing in QCLs is based on intersubband optical transitions in semiconductor quantum wells, the energy of which can be chosen by design ("bandstructure engineering"). However, simply building a THz optical transition is insufficient; a good design must also produce significant population inversion by the applied cascading electron current, and this requires deep understanding of the transport physics. So far, no THz QCL has operated above the temperature of 200 K, even though the reasons prohibiting high temperature operation are well known. The goal of this Thesis is to put novel ideas for high-temperature operation of THz QCL active regions through rigorous theoretical testing. The central enabling development is a density-matrix-based model of transport and optical properties tailored for use in QCLs, which is general enough that widely varying design concepts can be tested using the same core principles. Importantly, by simulating QCLs more generally, fewer a priori assumptions are required on part of the researcher, allowing for the true physics to emerge on its own. It will be shown that this gives rise to new and useful insights that will help to guide the experimental efforts towards realization of these devices. One specific application is a quantum dot cascade laser (QDCL), a highly ambitious approach in which the electrons cascade through a series of quantum dots rather than wells. Benefits are expected due to the suppression of nonradiative scattering, brought about by the discrete spectrum of electronic states. However, this in turn leads to a highly different physics of transport and effects that are not well understood, even in the case of perfect materials. This work will show that while the benefits are clear, naive scaling of existing QCL designs to the quantum dot limit will not work. An alternative strategy is given based on a revised understanding of the nature of transport, and is put to a test of practicality in which the effects of quantum dot size inhomogeneity are estimated. Another application is to the already existing method of THz difference frequency generation in mid-IR QCLs, which occurs via a difference-frequency susceptibility $\chi^{(2)}$ in the active region itself. For this purpose, the model is extended to enable a coherent and nonperturbative calculation of optical nonlinearities. First, the generality of the method is displayed through the emergence of exotic nonlinear effects, including electromagnetically-induced transparency, in mock quantum-well systems. Then, the modeling concepts are applied to the real devices, where two new and important mechanisms contributing to $\chi^{(2)}$ are identified. Most importantly, it is predicted that the QCL acts as an extremely fast photodetector of itself, giving rise to a current response to the mid-IR beatnote that provides a better path forward to the generation of frequencies below ~2 THz. Finally, the fundamentals of density matrix transport theory for QCLs are revisited to develop a model for conventional THz QCL designs eliminating the usual phenomenological treatment of scattering. The new theory is fully developed from first principles, and in particular sheds light on the effects of scattering-induced electron localization. The versatility of the model is demonstrated by successful simulation of varying active region designs.

Book Quantum Confined Laser Devices

Download or read book Quantum Confined Laser Devices written by Peter Blood and published by Oxford University Press. This book was released on 2015 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent treatment of both quantum dot and quantum well structures taking full account of their dimensionality, which provides the reader with a complete account of contemporary quantum confined laser diodes. It includes plenty of illustrations from both model calculations and experimental observations. There are numerous exercises, many designed to give a feel for values of key parameters and experience obtaining quantitative results from equations. Some challenging concepts, previously the subject matter of research monographs, are treated here at this level for the first time. To request a copy of the Solutions Manual, visit http: //global.oup.com/uk/academic/physics/admin/solutions.

Book THz and Mid IR Quantum Cascade Lasers and Light Emitting Devices

Download or read book THz and Mid IR Quantum Cascade Lasers and Light Emitting Devices written by Miriam Serena Vitiello and published by . This book was released on 2005 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Properties of Quantum Cascade Lasers

Download or read book Optical Properties of Quantum Cascade Lasers written by and published by . This book was released on 2008 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Laser Photonics

Download or read book Semiconductor Laser Photonics written by Mauro Nisoli and published by Cambridge University Press. This book was released on 2022-11-24 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern text provides detailed coverage of the important physical processes underpinning semiconductor devices. Advanced analysis of the optical properties of semiconductors without the requirement of complex mathematical formalism allows clear physical interpretation of all obtained results. The book describes fundamental aspects of solid-state physics and the quantum mechanics of electron-photon interactions, in addition to discussing in detail the photonic properties of bulk and quantum well semiconductors. The final six chapters focus on the physical properties of several widely-used photonic devices, including distributed feedback lasers, vertical-cavity surface-emitting lasers, quantum dot lasers, and quantum cascade lasers. This book is ideal for graduate students in physics and electrical engineering and a useful reference for optical scientists.