EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optical Response of Nanostructures

Download or read book Optical Response of Nanostructures written by Kikuo Cho and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a theoretical description of linear and nonlinear optical responses of matter with special emphasis on the microscopic and ‘nonlocal’ nature of resonant response. It will have a tremendous influence on modern device techniques, as it deals with frontier research in response theory.

Book Modelling of Optical Response Properties

Download or read book Modelling of Optical Response Properties written by Lasse Jensen and published by . This book was released on 2004 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optics of Nanomaterials

    Book Details:
  • Author : Vladimir I. Gavrilenko
  • Publisher : CRC Press
  • Release : 2016-10-14
  • ISBN : 1466511729
  • Pages : 373 pages

Download or read book Optics of Nanomaterials written by Vladimir I. Gavrilenko and published by CRC Press. This book was released on 2016-10-14 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the chemistry, physics, and optical properties of simple atoms and molecules are quite well understood, this book demonstrates that there is much to be learned about the optics of nanomaterials. Through comparative analysis of the size-dependent optical response from nanomaterials, it is shown that although strides have been made in computational chemistry and physics, bridging length scales from nano to macro remains a major challenge. Organic, molecular, polymer, and biological systems are shown to be potentially useful models for assembly. Our progress in understanding the optical properties of biological nanomaterials is important driving force for a variety of applications.

Book The Nanoscale Optical Properties of Complex Nanostructures

Download or read book The Nanoscale Optical Properties of Complex Nanostructures written by Jordan A. Hachtel and published by Springer. This book was released on 2017-12-09 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents studies of complex nanostructures with unique optical responses from both theoretical and experimental perspectives. The theory approaches the optical response of a complex structure from both quantum-mechanical and semiclassical frameworks, and is used to understand experimental results at a fundamental level as well as to form a quantitative model to allow the design of custom nanostructures. The experiments utilize scanning transmission electron microscopy and its associated analytical spectroscopies to observe nanoscale optical effects, such as surface plasmon resonances, with nanometer-scale spatial resolution. Furthermore, there is a focus in the dissertation on the combination of distinct techniques to study the difficult-to-access aspects of the nanoscale response of complex nanostructures: the combination of complementary spectroscopies, the combination of electron microscopy and photonics, and the combination of experiment and theory. Overall, the work demonstrates the importance of observing nanoscale optical phenomena in complex structures, and observing them directly at the nanoscale.

Book Optical Properties of Metallic Nanoparticles

Download or read book Optical Properties of Metallic Nanoparticles written by Andreas Trügler and published by Springer. This book was released on 2016-03-29 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.

Book Modulating the Response of Optical Nanostructure by Integrating Novel Plasmonic Building Blocks

Download or read book Modulating the Response of Optical Nanostructure by Integrating Novel Plasmonic Building Blocks written by Yu Yuwen and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmonic nanostructures are of great interest due to the broad range of applications from biodetection to metamaterial. The desired optical functionality of these nanostructures can only be realized if the designed geometries and constituent material quality are accurately reproduced experimentally. This dissertation research developed new fabrication methods to create planar and freestanding plasmonic nanostructures, including two-dimensional (2D) planar gold (Au) nanoparticle quasicrystals, one-dimensional (1D) Au nanoparticle arrays, and ring-loaded Au nanoparticle dimer nanoantennas. The measured and modeled optical properties of each type of structure were found to be in strong agreement with one another, thereby confirming the effectiveness of the fabrication approaches in reproducing the designed structure. In Chapter 2, planar 2D plasmonic quasicrystal arrays composed of spherical Au nanoparticles were created by Au-enhanced oxidation of lithographically patterned stacks of evaporated amorphous silicon (a-Si) and Au thin films. In contrast to 2D periodic plasmonic structures, which can be accurately simulated for arbitrarily shaped nanoparticles, computationally efficient models for quasicrystals require spherical particle geometries. Using the process developed in this research, broadband Ammann-Beenker and multiband Penrose plasmonic quasicrystals were fabricated and optically characterized. The measured transmission spectra of the fabricated structures agreed well with simulation, thereby enabling an experimental validation of the modeled interaction between the plasmonic and photonic modes of the two structures. In Chapter 3, freestanding 1D Au nanoparticle arrays encapsulated within a silicon dioxide (SiO2) shell were produced by Au-enhanced oxidation of Au-coated, surface modulated Si nanowires. This lithography-free process overcomes the linear relationship between nanoparticle diameter and interparticle spacing imposed by the Rayleigh instability, and provides accurate and reproducible control of both of these parameters over a wide range of particle diameters and spacings. The modeled optical properties of fabricated 1D arrays were confirmed experimentally by extinction measurements of a randomly oriented ensemble of wires as well as by scanning transmission electron microscopy (STEM) electron energy loss spectra (EELS) and energy filtered transmission electron microscopy (EFTEM) analysis of individual wire arrays. In Chapter 4, a nanoring-loaded dimer nanoantenna was designed to give a multiband optical plasmonic response. The center wavelength and bandwidth of the two bands was varied by modifying the nanoring inner diameter. A top-down process was optimized to reproducibly fabricate the ring-loaded nanoantenna with sub-10 nm wide gaps between the three particles and an inner/outer nanoring diameter of 30nm and 55nm, respectively. Electromagnetic modeling showed that the multi-band response originated from differences in coupling between the nanoring and nanoparticle building blocks for the long- and short-wavelength resonances. The optical response was also understood by modeling the electric/magnetic field and charge distribution of the nanoantennas at the two resonant wavelengths.

Book Optical Properties And Spectroscopy Of Nanomaterials

Download or read book Optical Properties And Spectroscopy Of Nanomaterials written by Jin Zhong Zhang and published by World Scientific. This book was released on 2009-07-21 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials.

Book Linear Optical Response of Silicon Surfaces and Silicon Nanostructures

Download or read book Linear Optical Response of Silicon Surfaces and Silicon Nanostructures written by Uwe Rossow and published by . This book was released on 2000 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Nonlinearities in Nanostructured Systems

Download or read book Optical Nonlinearities in Nanostructured Systems written by Carlos Torres-Torres and published by Springer Nature. This book was released on 2022-09-02 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a detailed overview of second- and third-order nonlinearities in various nanostructures, as well as their potential applications. Interest in the field of nonlinear optics has grown exponentially in recent years and, as a result, there is increasing research on novel nonlinear phenomena and the development of nonlinear photonic devices. Thus, such a book serves as a comprehensive guide for researchers in the field and those seeking to become familiar with it. This text focuses on the nonlinear properties of nanostructured systems that arise as a result of optical wave mixing. The authors present a review of nonlinear optical processes on the nanoscale and provide theoretical descriptions for second and third-order optical nonlinearities in nanostructures such as carbon allotropes, metallic nanostructures, semiconductors, nanocrystals, and complex geometries. Here, the characterization and potential applications of these nanomaterials are also discussed. The factors that determine the nonlinear susceptibility in these systems are identified as well as the influence of physical mechanisms emerging from resonance and off-resonance excitations. In addition, the authors detail the effects driven by important phenomena such as quantum confinement, localized surface plasmon resonance, Fano resonances, bound states, and the Purcell effect on specific nanostructured systems. Readers are provided with a groundwork for future research as well as new perspectives in this growing field.

Book Optical Properties of Nanostructures

Download or read book Optical Properties of Nanostructures written by Ying Fu and published by Pan Stanford Publishing. This book was released on 2011-08-08 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses electrons and photons in and through nanostructures by the first-principles quantum mechanical theories and fundamental concepts (a unified coverage of nanostructured electronic and optical components) behind nanoelectronics and optoelectronics, the material basis, physical phenomena, device physics, as well as designs and applications. The combination of viewpoints presented in the book can help foster further research and cross-disciplinary interaction needed to surmount the barriers facing future generations of technology design.

Book Noble and Precious Metals

Download or read book Noble and Precious Metals written by Mohindar Seehra and published by BoD – Books on Demand. This book was released on 2018-07-04 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of copper, silver, gold and platinum in jewelry as a measure of wealth is well known. This book contains 19 chapters written by international authors on other uses and applications of noble and precious metals (copper, silver, gold, platinum, palladium, iridium, osmium, rhodium, ruthenium, and rhenium). The topics covered include surface-enhanced Raman scattering, quantum dots, synthesis and properties of nanostructures, and its applications in the diverse fields such as high-tech engineering, nanotechnology, catalysis, and biomedical applications. The basis for these applications is their high-free electron concentrations combined with high-temperature stability and corrosion resistance and methods developed for synthesizing nanostructures. Recent developments in all these areas with up-to-date references are emphasized.

Book Random Heterogeneous Materials

Download or read book Random Heterogeneous Materials written by Salvatore Torquato and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods.

Book Chapter On the Optical Response of Nanoparticles  Directionality Effects and Optical Forces

Download or read book Chapter On the Optical Response of Nanoparticles Directionality Effects and Optical Forces written by Braulio Garcia-Camara and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Meta Optics

Download or read book Nonlinear Meta Optics written by Costantino De Angelis and published by CRC Press. This book was released on 2020-05-20 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. • Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects • Describes the research challenges in the field of optical metasurfaces in the nonlinear regime • Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response • Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces • Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics Costantino De Angelis has been full professor of electromagnetic fields at the University of Brescia since 1998. He is an OSA Fellow and has been responsible for several university research contracts in the last 20 years within Europe, the United States, and Italy. His technical interests are in optical antennas and nanophotonics. He is the author of over 150 peer-reviewed scientific journal articles. Giuseppe Leo has been a full professor in physics at Paris Diderot University since 2004, and in charge of the nonlinear devices group of MPQ Laboratory since 2006. His research areas include nonlinear optics, micro- and nano-photonics, and optoelectronics, with a focus on AlGaAs platform. He has coordinated several research programs and coauthored 100 peer-reviewed journal articles, 200 conference papers, 10 book chapters and also has four patents. Dragomir Neshev is a professor in physics and the leader of the experimental photonics group in the Nonlinear Physics Centre at Australian National University (ANU). His activities span over several branches of optics, including nonlinear periodic structures, singular optics, plasmonics, and photonic metamaterials. He has coauthored 200 publications in international peer-reviewed scientific journals.

Book Novel Nanoscale Hybrid Materials

Download or read book Novel Nanoscale Hybrid Materials written by Bhanu P. S. Chauhan and published by John Wiley & Sons. This book was released on 2018-01-31 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and interdisciplinary resource filled with strategic insights, tools, and techniques for the design and construction of hybrid materials. Hybrid materials represent the best of material properties being combined for the development for materials with properties otherwise unavailable for application requirements. Novel Nanoscale Hybrid Materials is a comprehensive resource that contains contributions from a wide range of noted scientists from various fields, working on the hybridization of nanomolecules in order to generate new materials with superior properties. The book focuses on the new directions and developments in design and application of new materials, incorporating organic/inorganic polymers, biopolymers, and nanoarchitecture approaches. This book delves deeply into the complexities that arise when characteristics of a molecule change on the nanoscale, overriding the properties of the individual nanomolecules and generating new properties and capabilities altogether. The main topics cover hybrids of carbon nanotubes and metal nanoparticles, semiconductor polymer/biopolymer hybrids, metal biopolymer hybrids, bioorganic/inorganic hybrids, and much more. This important resource: Addresses a cutting-edge field within nanomaterials by presenting groundbreaking topics that address hybrid nanostructures Includes contributions from an interdisciplinary group of chemists, physicists, materials scientists, chemical and biomedical engineers Contains applications in a wide-range of fields—including biomedicine, energy, catalysis, green chemistry, graphene chemistry, and environmental science Offers expert commentaries that explore potential future avenues of future research trends Novel Nanoscale Hybrid Materials is an important resource for chemists, physicists, materials, chemical and biomedical engineers that offers the most recent developments and techniques in hybrid nanostructures.

Book Amorphous Nanophotonics

    Book Details:
  • Author : Carsten Rockstuhl
  • Publisher : Springer Science & Business Media
  • Release : 2013-02-15
  • ISBN : 3642324754
  • Pages : 381 pages

Download or read book Amorphous Nanophotonics written by Carsten Rockstuhl and published by Springer Science & Business Media. This book was released on 2013-02-15 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic from many directions.