Download or read book Optical Guided wave Chemical and Biosensors II written by Mohammed Zourob and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, distinguished scientists from key institutions worldwide provide a comprehensive approach to optical sensing techniques employing the phenomenon of guided wave propagation for chemical and biosensors. This includes both state-of the-art fundamentals and innovative applications of these techniques. The authors present a deep analysis of their particular subjects in a way to address the needs of novice researchers such as graduate students and post-doctoral scholars as well as of established researchers seeking new avenues. Researchers and practitioners who need a solid foundation or reference will find this work invaluable. This second of two volumes covers the incorporation of periodic structures in waveguides to exploit the Bragg phenomenon, optical fiber sensors, hollow waveguides and micro-resonators as well as a review of the tremendous expansion of terahertz technology for sensing applications.
Download or read book Optical Guided wave Chemical and Biosensors I written by Mohammed Zourob and published by Springer Science & Business Media. This book was released on 2010-03-18 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, distinguished scientists from key institutions worldwide provide a comprehensive approach to optical sensing techniques employing the phenomenon of guided wave propagation for chemical and biosensors. This includes both state-of the-art fundamentals and innovative applications of these techniques. The authors present a deep analysis of their particular subjects in a way to address the needs of novice researchers such as graduate students and post-doctoral scholars as well as of established researchers seeking new avenues. Researchers and practitioners who need a solid foundation or reference will find this work invaluable. This first of two volumes contains eight chapters covering planar waveguides for sensing, as well as sensing techniques based on plasmonic waveguides.
Download or read book Optical Chemical Sensors written by F. Baldini and published by Springer Science & Business Media. This book was released on 2006-05-03 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers optical chemical sensing by means of optical waveguides, from the fundamentals to the most recent applications. The book includes a historical review of the development of these sensors, from the earliest laboratory prototypes to the first commercial instrumentations. The book reprints a lecture by the Nobel Laureate Charles Townes on the birth of maser and laser, which lucidly illustrates the development of new science and new technology.
Download or read book Chemical Sensors and Biosensors written by Florinel-Gabriel Banica and published by John Wiley & Sons. This book was released on 2012-08-15 with total page 795 pages. Available in PDF, EPUB and Kindle. Book excerpt: Key features include: Self-assessment questions and exercises Chapters start with essential principles, then go on to address more advanced topics More than 1300 references to direct the reader to key literature and further reading Highly illustrated with 450 figures, including chemical structures and reactions, functioning principles, constructive details and response characteristics Chemical sensors are self-contained analytical devices that provide real-time information on chemical composition. A chemical sensor integrates two distinct functions: recognition and transduction. Such devices are widely used for a variety of applications, including clinical analysis, environment monitoring and monitoring of industrial processes. This text provides an up-to-date survey of chemical sensor science and technology, with a good balance between classical aspects and contemporary trends. Topics covered include: Structure and properties of recognition materials and reagents, including synthetic, biological and biomimetic materials, microorganisms and whole-cells Physicochemical basis of various transduction methods (electrical, thermal, electrochemical, optical, mechanical and acoustic wave-based) Auxiliary materials used e.g. synthetic and natural polymers, inorganic materials, semiconductors, carbon and metallic materials properties and applications of advanced materials (particularly nanomaterials) in the production of chemical sensors and biosensors Advanced manufacturing methods Sensors obtained by combining particular transduction and recognition methods Mathematical modeling of chemical sensor processes Suitable as a textbook for graduate and final year undergraduate students, and also for researchers in chemistry, biology, physics, physiology, pharmacology and electronic engineering, this bookis valuable to anyone interested in the field of chemical sensors and biosensors.
Download or read book Optical Nano and Microsystems for Bioanalytics written by Wolfgang Fritzsche and published by Springer Science & Business Media. This book was released on 2012-02-04 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the state of the art in the field of bioanalytical nano- and microsystems with optical functionality. In 12 chapters distinguished scientists and leaders in their respective fields show how various optical technologies have been miniaturized and integrated over the last few decades in order to be combined with nano- and microsystems for applications in the life sciences. The main detection and characterization technologies are introduced, and examples of the superiority of these integrated approaches compared to traditional ones are provided. Examples from e.g. the fields of optical waveguides, integrated interferometers, surface plasmon resonance or Raman spectroscopy are introduced and discussed, and it is shown how these approaches have led to novel functionalities and thereby novel applications.
Download or read book Designing Receptors for the Next Generation of Biosensors written by Sergey A. Piletsky and published by Springer Science & Business Media. This book was released on 2012-09-26 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite achievements in the application of enzymes, antibodies and biological receptors to diagnostics and sensing, the last two decades have also witnessed the emergence of a number of alternative technologies based on synthetic chemistry. This volume shows how synthetic receptors can be designed with characteristics that make them attractive alternatives to biological molecules in the sensory and diagnostics fields, with contributions from leading experts in the area. Subjects covered include synthetic receptors for a range of biomolecules, the use of antimicrobial peptides for the detection of pathogenic microorganisms, the development of molecularly imprinted polymer (MIP) nanoparticles, the in silico design of MIPs and MIP-based sensors, and two chapters examining the development of sensors from an industrial point of view. The particular focus of all chapters is on practical aspects, either in the development process or the applications of the synthesized materials. This book will serve as an important reference work for business leaders and technology experts in the sensors and diagnostics sector.
Download or read book Optofluidics Sensors and Actuators in Microstructured Optical Fibers written by Stavros Pissadakis and published by Woodhead Publishing. This book was released on 2015-05-19 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining the positive characteristics of microfluidics and optics, microstructured optical fibres (MOFs) have revolutionized the field of optoelectronics. Tailored guiding, diffractive structures and photonic band-gap effects are used to produce fibres with highly specialised, complex structures, facilitating the development of novel kinds of optical fibre sensors and actuators.Part One outlines the key materials and fabrication techniques used for microstructured optical fibres. Microfluidics and heat flows, MOF-based metamaterials, novel and liquid crystal infiltrated photonic crystal fibre (PCF) designs, MOFs filled with carbon nanotubes and melting of functional inorganic glasses inside PCFs are all reviewed. Part Two then goes on to investigate sensing and optofluidic applications, with the use of MOFs in structural sensing, sensing units and mechanical sensing explored in detail. PCF's for switching applications are then discussed before the book concludes by reviewing MOFs for specific nucleic acid detection and resonant bio- and chemical sensing. - Provides users with the necessary knowledge to successfully design and implement microstructured optical fibres for a broad range of uses - Outlines techniques for developing both traditional and novel types of optical fibre - Highlights the adaptability of microstructured optical fibres achieved via the use of optofluidics, sensors and actuators, by presenting a diverse selection of applications
Download or read book Applications of Nanomaterials in Sensors and Diagnostics written by Adisorn Tuantranont and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.
Download or read book Mathematical Modeling of Biosensors written by Romas Baronas and published by Springer Science & Business Media. This book was released on 2009-11-12 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biosensors are analytical devices in which speci?c recognition of the chemical substances is performed by biological material. The biological material that serves as recognition element is used in combination with a transducer. The transducer transforms concentration of substrate or product to electrical signal that is amp- ?ed and further processed. The biosensors may utilize enzymes, antibodies, nucleic acids, organelles, plant and animal tissue, whole organism or organs. Biosensors containing biological catalysts (enzymes) are called catalytical biosensors. These type of biosensors are the most abundant, and they found the largest application in medicine, ecology, and environmental monitoring. The action of catalytical biosensors is associated with substrate diffusion into biocatalytical membrane and it conversion to a product. The modeling of bios- sors involves solving the diffusion equations for substrate and product with a term containing a rate of biocatalytical transformation of substrate. The complications of modeling arise due to solving of partially differential equations with non-linear biocatalytical term and with complex boundary and initial conditions. The book starts with the modeling biosensors by analytical solution of partial differential equations. Historically this method was used to describe fundamental features of biosensors action though it is limited by substrate concentration, and is applicable for simple biocatalytical processes. Using this method the action of biosensors was analyzed at critical concentrations of substrate and enzyme activity.
Download or read book Solid State Gas Sensors Industrial Application written by Maximilian Fleischer and published by Springer Science & Business Media. This book was released on 2012-06-05 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.
Download or read book Gas Sensing Fundamentals written by Claus-Dieter Kohl and published by Springer. This book was released on 2014-08-18 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, which addresses various basic sensor principles, covers micro gravimetric sensors, semiconducting and nano tube sensors, calorimetric sensors and optical sensors. Furthermore, the authors discuss recent developments in the related sensitive layers including new properties of nano structured metal oxide layers. They provide in-depth insights into the unique chemistry and signal generation of copper oxide in percolating sensors and present a variety of applications of functional polymers made possible by proper imprinting. Highlights of the subjects covered include: • requirements for high-temperature sensors • carbon nano tube sensors • new sensing model for nanostructured In2O3 • bio mimetic approach for semiconductor sensor-based systems • optical readout for inorganic and organic semiconductor sensors • concept of virtual multisensors to improve specificity and selectivity • calorimetric sensors for hydrogen peroxide detection • percolation effect-based sensors to implement dosimeters • imprinted polymer layers for bulk and surface acoustic wave sensors
Download or read book Autonomous Sensor Networks written by Daniel Filippini and published by Springer Science & Business Media. This book was released on 2012-11-27 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume surveys recent research on autonomous sensor networks from the perspective of enabling technologies that support medical, environmental and military applications. State of the art, as well as emerging concepts in wireless sensor networks, body area networks and ambient assisted living introduce the reader to the field, while subsequent chapters deal in depth with established and related technologies, which render their implementation possible. These range from smart textiles and printed electronic devices to implanted devices and specialized packaging, including the most relevant technological features. The last four chapters are devoted to customization, implementation difficulties and outlook for these technologies in specific applications.
Download or read book Plasmonics Based Optical Sensors and Detectors written by Banshi D. Gupta and published by CRC Press. This book was released on 2023-08-24 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmonics stems from the surface charge density oscillations at metal–dielectric interface, leading to extremely strong light–matter interactions. In the past few decades, plasmonics has become one of the most favorite fields/techniques in realizing high-performance photonic devices. For this purpose, different new concepts, such as exploration of different radiation frequency regions, two-dimensional materials/heterostructures, and different types of substrates for the excitation of plasmons have been investigated for plasmonics-based sensors and detectors. This book focuses on the recent and advanced works on optical sensors and detectors utilizing plasmonic techniques for opto-electronic applications. The book is unique as it describes both sensors and detectors based on plasmonics and their practical applications in a single book, a feature not found in any book so far.
Download or read book The Advancing World of Applied Electromagnetics written by Akhlesh Lakhtakia and published by Springer Nature. This book was released on with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Chemical Sensors written by Ghenadii Korotcenkov and published by Momentum Press. This book was released on 2011-11-02 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical sensors are integral to the automation of myriad industrial processes, as well as everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more. This massive reference work will cover all major categories of chemical sensor materials and devices, and their general functional usage...from monitoring and analyzing gases, to analyzing liquids and compounds of all kinds. This is THE reference work on sensors used for chemical detection and analysis. In this final volume of the Chemical Sensors will be found the latest in new chemical sensor applications including remote chemical sensing for such applications as atmosphere monitoring , new uses for electronic "noses" and "tongues," wireless chemical sensors, and new future directions for chemical sensors in industry, agriculture, and transportation.
Download or read book Handbook of Biosensors and Electronic Noses written by Erika Kress-Rogers and published by CRC Press. This book was released on 2024-11-01 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: In developing the electronic nose and biosensor devices, researchers not only copy biochemical pathways, but also use nature's approach to signal interpretation as a blueprint for man-made sensing systems. Commercial biosensors have demonstrated their benefits and practical applications, providing high sensitivity and selectivity, combined with a significant reduction in sample preparation assay time and the use of expensive reagents. The Handbook of Biosensors and Electronic Noses discusses design and optimization for the multitude of practical uses of these devices including:
Download or read book Biosensors for Security and Bioterrorism Applications written by Dimitrios P. Nikolelis and published by Springer. This book was released on 2016-03-12 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers comprehensive coverage of biomarker/biosensor interactions for the rapid detection of weapons of bioterrorism, as well as current research trends and future developments and applications. It will be useful to researchers in this field who are interested in new developments in the early detection of such. The authors have collected very valuable and, in some aspects indispensable experience in the area i.e. in the development and application of portable biosensors for the detection of potential hazards. Most efforts are centered on the development of immunochemical assays including flow-lateral systems and engineered antibodies and their fragments. In addition, new approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites and nutrients are elaborated. Some realized prototypes and concept devices applicable for the further use as a basis for the cooperation programs are also discussed.There is a particular focus on electrochemical and optical detection systems,including those employing carbon nanotubes, quantum dots and metalnanoparticles. The authors are well-known scientists and most of them are editors of respected international scientific journals. Although recently developed biosensors utilize known principles, the biosensing devices described can significantly shorten the time required for successful detection and enhance efforts in more time-consuming directions, e.g. remote sensing systems and validation in real-sample analysis.The authors describe advances in all stages of biosensor development: theselection of biochemical components, their use in biosensor assembly, detection principles and improvements and applications for real sample assays.