Download or read book OpenCL Programming Guide written by Aaftab Munshi and published by Pearson Education. This book was released on 2011-07-07 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the new OpenCL (Open Computing Language) standard, you can write applications that access all available programming resources: CPUs, GPUs, and other processors such as DSPs and the Cell/B.E. processor. Already implemented by Apple, AMD, Intel, IBM, NVIDIA, and other leaders, OpenCL has outstanding potential for PCs, servers, handheld/embedded devices, high performance computing, and even cloud systems. This is the first comprehensive, authoritative, and practical guide to OpenCL 1.1 specifically for working developers and software architects. Written by five leading OpenCL authorities, OpenCL Programming Guide covers the entire specification. It reviews key use cases, shows how OpenCL can express a wide range of parallel algorithms, and offers complete reference material on both the API and OpenCL C programming language. Through complete case studies and downloadable code examples, the authors show how to write complex parallel programs that decompose workloads across many different devices. They also present all the essentials of OpenCL software performance optimization, including probing and adapting to hardware. Coverage includes Understanding OpenCL’s architecture, concepts, terminology, goals, and rationale Programming with OpenCL C and the runtime API Using buffers, sub-buffers, images, samplers, and events Sharing and synchronizing data with OpenGL and Microsoft’s Direct3D Simplifying development with the C++ Wrapper API Using OpenCL Embedded Profiles to support devices ranging from cellphones to supercomputer nodes Case studies dealing with physics simulation; image and signal processing, such as image histograms, edge detection filters, Fast Fourier Transforms, and optical flow; math libraries, such as matrix multiplication and high-performance sparse matrix multiplication; and more Source code for this book is available at https://code.google.com/p/opencl-book-samples/
Download or read book OpenCL Programming by Example written by Ravishekhar Banger and published by Packt Publishing Ltd. This book was released on 2013-12-23 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book follows an example-driven, simplified, and practical approach to using OpenCL for general purpose GPU programming. If you are a beginner in parallel programming and would like to quickly accelerate your algorithms using OpenCL, this book is perfect for you! You will find the diverse topics and case studies in this book interesting and informative. You will only require a good knowledge of C programming for this book, and an understanding of parallel implementations will be useful, but not necessary.
Download or read book OpenCL in Action written by Matthew Scarpino and published by Simon and Schuster. This book was released on 2011-11-13 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary OpenCL in Action is a thorough, hands-on presentation of OpenCL, with an eye toward showing developers how to build high-performance applications of their own. It begins by presenting the core concepts behind OpenCL, including vector computing, parallel programming, and multi-threaded operations, and then guides you step-by-step from simple data structures to complex functions. About the Technology Whatever system you have, it probably has more raw processing power than you're using. OpenCL is a high-performance programming language that maximizes computational power by executing on CPUs, graphics processors, and other number-crunching devices. It's perfect for speed-sensitive tasks like vector computing, matrix operations, and graphics acceleration. About this Book OpenCL in Action blends the theory of parallel computing with the practical reality of building high-performance applications using OpenCL. It first guides you through the fundamental data structures in an intuitive manner. Then, it explains techniques for high-speed sorting, image processing, matrix operations, and fast Fourier transform. The book concludes with a deep look at the all-important subject of graphics acceleration. Numerous challenging examples give you different ways to experiment with working code. A background in C or C++ is helpful, but no prior exposure to OpenCL is needed. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside Learn OpenCL step by step Tons of annotated code Tested algorithms for maximum performance *********** Table of Contents PART 1 FOUNDATIONS OF OPENCL PROGRAMMING Introducing OpenCL Host programming: fundamental data structures Host programming: data transfer and partitioning Kernel programming: data types and device memory Kernel programming: operators and functions Image processing Events, profiling, and synchronization Development with C++ Development with Java and Python General coding principles PART 2 CODING PRACTICAL ALGORITHMS IN OPENCL Reduction and sorting Matrices and QR decomposition Sparse matrices Signal processing and the fast Fourier transform PART 3 ACCELERATING OPENGL WITH OPENCL Combining OpenCL and OpenGL Textures and renderbuffers
Download or read book Heterogeneous Computing with OpenCL written by Benedict Gaster and published by Newnes. This book was released on 2012-11-13 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterogeneous Computing with OpenCL, Second Edition teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs) such as AMD Fusion technology. It is the first textbook that presents OpenCL programming appropriate for the classroom and is intended to support a parallel programming course. Students will come away from this text with hands-on experience and significant knowledge of the syntax and use of OpenCL to address a range of fundamental parallel algorithms. Designed to work on multiple platforms and with wide industry support, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, Heterogeneous Computing with OpenCL explores memory spaces, optimization techniques, graphics interoperability, extensions, and debugging and profiling. It includes detailed examples throughout, plus additional online exercises and other supporting materials that can be downloaded at http://www.heterogeneouscompute.org/?page_id=7 This book will appeal to software engineers, programmers, hardware engineers, and students/advanced students. Explains principles and strategies to learn parallel programming with OpenCL, from understanding the four abstraction models to thoroughly testing and debugging complete applications. Covers image processing, web plugins, particle simulations, video editing, performance optimization, and more. Shows how OpenCL maps to an example target architecture and explains some of the tradeoffs associated with mapping to various architectures Addresses a range of fundamental programming techniques, with multiple examples and case studies that demonstrate OpenCL extensions for a variety of hardware platforms
Download or read book WebGL Programming Guide written by Kouichi Matsuda and published by Addison-Wesley. This book was released on 2013-07-04 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using WebGL®, you can create sophisticated interactive 3D graphics inside web browsers, without plug-ins. WebGL makes it possible to build a new generation of 3D web games, user interfaces, and information visualization solutions that will run on any standard web browser, and on PCs, smartphones, tablets, game consoles, or other devices. WebGL Programming Guide will help you get started quickly with interactive WebGL 3D programming, even if you have no prior knowledge of HTML5, JavaScript, 3D graphics, mathematics, or OpenGL. You’ll learn step-by-step, through realistic examples, building your skills as you move from simple to complex solutions for building visually appealing web pages and 3D applications with WebGL. Media, 3D graphics, and WebGL pioneers Dr. Kouichi Matsuda and Dr. Rodger Lea offer easy-to-understand tutorials on key aspects of WebGL, plus 100 downloadable sample programs, each demonstrating a specific WebGL topic. You’ll move from basic techniques such as rendering, animating, and texturing triangles, all the way to advanced techniques such as fogging, shadowing, shader switching, and displaying 3D models generated by Blender or other authoring tools. This book won’t just teach you WebGL best practices, it will give you a library of code to jumpstart your own projects. Coverage includes: • WebGL’s origin, core concepts, features, advantages, and integration with other web standards • How and basic WebGL functions work together to deliver 3D graphics • Shader development with OpenGL ES Shading Language (GLSL ES) • 3D scene drawing: representing user views, controlling space volume, clipping, object creation, and perspective • Achieving greater realism through lighting and hierarchical objects • Advanced techniques: object manipulation, heads-up displays, alpha blending, shader switching, and more • Valuable reference appendixes covering key issues ranging from coordinate systems to matrices and shader loading to web browser settings This is the newest text in the OpenGL Technical Library, Addison-Wesley’s definitive collection of programming guides an reference manuals for OpenGL and its related technologies. The Library enables programmers to gain a practical understanding of OpenGL and the other Khronos application-programming libraries including OpenGL ES and OpenCL. All of the technologies in the OpenGL Technical Library evolve under the auspices of the Khronos Group, the industry consortium guiding the evolution of modern, open-standards media APIs.
Download or read book OpenVX Programming Guide written by Frank Brill and published by Academic Press. This book was released on 2020-05-22 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: OpenVX is the computer vision API adopted by many high-performance processor vendors. It is quickly becoming the preferred way to write fast and power-efficient code on embedded systems. OpenVX Programming Guidebook presents definitive information on OpenVX 1.2 and 1.3, the Neural Network, and other extensions as well as the OpenVX Safety Critical standard. This book gives a high-level overview of the OpenVX standard, its design principles, and overall structure. It covers computer vision functions and the graph API, providing examples of usage for the majority of the functions. It is intended both for the first-time user of OpenVX and as a reference for experienced OpenVX developers. - Get to grips with the OpenVX standard and gain insight why various options were chosen - Start developing efficient OpenVX code instantly - Understand design principles and use them to create robust code - Develop consumer and industrial products that use computer vision to understand and interact with the real world
Download or read book Heterogeneous Computing with OpenCL 2 0 written by David R. Kaeli and published by Morgan Kaufmann. This book was released on 2015-06-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: • Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources • Dynamic parallelism which reduces processor load and avoids bottlenecks • Improved imaging support and integration with OpenGL Designed to work on multiple platforms, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book explores memory spaces, optimization techniques, extensions, debugging and profiling. Multiple case studies and examples illustrate high-performance algorithms, distributing work across heterogeneous systems, embedded domain-specific languages, and will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. Updated content to cover the latest developments in OpenCL 2.0, including improvements in memory handling, parallelism, and imaging support Explanations of principles and strategies to learn parallel programming with OpenCL, from understanding the abstraction models to thoroughly testing and debugging complete applications Example code covering image analytics, web plugins, particle simulations, video editing, performance optimization, and more
Download or read book OpenGL ES 3 0 Programming Guide written by Dan Ginsburg and published by Addison-Wesley Professional. This book was released on 2014-02-28 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: OpenGL ® ES TM is the industry’s leading software interface and graphics library for rendering sophisticated 3D graphics on handheld and embedded devices. The newest version, OpenGL ES 3.0, makes it possible to create stunning visuals for new games and apps, without compromising device performance or battery life. In the OpenGL® ESTM 3.0 Programming Guide, Second Edition, the authors cover the entire API and Shading Language. They carefully introduce OpenGL ES 3.0 features such as shadow mapping, instancing, multiple render targets, uniform buffer objects, texture compression, program binaries, and transform feedback. Through detailed, downloadable C-based code examples, you’ll learn how to set up and program every aspect of the graphics pipeline. Step by step, you’ll move from introductory techniques all the way to advanced per-pixel lighting and particle systems. Throughout, you’ll find cutting-edge tips for optimizing performance, maximizing efficiency with both the API and hardware, and fully leveraging OpenGL ES 3.0 in a wide spectrum of applications. All code has been built and tested on iOS 7, Android 4.3, Windows (OpenGL ES 3.0 Emulation), and Ubuntu Linux, and the authors demonstrate how to build OpenGL ES code for each platform. Coverage includes EGL API: communicating with the native windowing system, choosing configurations, and creating rendering contexts and surfaces Shaders: creating and attaching shader objects; compiling shaders; checking for compile errors; creating, linking, and querying program objects; and using source shaders and program binaries OpenGL ES Shading Language: variables, types, constructors, structures, arrays, attributes, uniform blocks, I/O variables, precision qualifiers, and invariance Geometry, vertices, and primitives: inputting geometry into the pipeline, and assembling it into primitives 2D/3D, Cubemap, Array texturing: creation, loading, and rendering; texture wrap modes, filtering, and formats; compressed textures, sampler objects, immutable textures, pixel unpack buffer objects, and mipmapping Fragment shaders: multitexturing, fog, alpha test, and user clip planes Fragment operations: scissor, stencil, and depth tests; multisampling, blending, and dithering Framebuffer objects: rendering to offscreen surfaces for advanced effects Advanced rendering: per-pixel lighting, environment mapping, particle systems, image post-processing, procedural textures, shadow mapping, terrain, and projective texturing Sync objects and fences: synchronizing within host application and GPU execution This edition of the book includes a color insert of the OpenGL ES 3.0 API and OpenGL ES Shading Language 3.0 Reference Cards created by Khronos. The reference cards contain a complete list of all of the functions in OpenGL ES 3.0 along with all of the types, operators, qualifiers, built-ins, and functions in the OpenGL ES Shading Language.
Download or read book Vulkan Programming Guide written by Graham Sellers and published by Addison-Wesley Professional. This book was released on 2016-11-07 with total page 1034 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Definitive VulkanTM Developer’s Guide and Reference: Master the Next-Generation Specification for Cross-Platform Graphics The next generation of the OpenGL specification, Vulkan, has been redesigned from the ground up, giving applications direct control over GPU acceleration for unprecedented performance and predictability. VulkanTM Programming Guide is the essential, authoritative reference to this new standard for experienced graphics programmers in all Vulkan environments. Vulkan API lead Graham Sellers (with contributions from language lead John Kessenich) presents example-rich introductions to the portable Vulkan API and the new SPIR-V shading language. The author introduces Vulkan, its goals, and the key concepts framing its API, and presents a complex rendering system that demonstrates both Vulkan’s uniqueness and its exceptional power. You’ll find authoritative coverage of topics ranging from drawing to memory, and threading to compute shaders. The author especially shows how to handle tasks such as synchronization, scheduling, and memory management that are now the developer’s responsibility. VulkanTM Programming Guide introduces powerful 3D development techniques for fields ranging from video games to medical imaging, and state-of-the-art approaches to solving challenging scientific compute problems. Whether you’re upgrading from OpenGL or moving to open-standard graphics APIs for the first time, this guide will help you get the results and performance you’re looking for. Coverage includes Extensively tested code examples to demonstrate Vulkan’s capabilities and show how it differs from OpenGL Expert guidance on getting started and working with Vulkan’s new memory system Thorough discussion of queues, commands, moving data, and presentation Full explanations of the SPIR-V binary shading language and compute/graphics pipelines Detailed discussions of drawing commands, geometry and fragment processing, synchronization primitives, and reading Vulkan data into applications A complete case study application: deferred rendering using complex multi-pass architecture and multiple processing queues Appendixes presenting Vulkan functions and SPIR-V opcodes, as well as a complete Vulkan glossary Example code can be found here: Example code can be found here: https://github.com/vulkanprogrammingguide/examples
Download or read book CUDA Programming written by Shane Cook and published by Newnes. This book was released on 2012-11-13 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'CUDA Programming' offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation.
Download or read book Programming Massively Parallel Processors written by David B. Kirk and published by Newnes. This book was released on 2012-12-31 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Download or read book Professional CUDA C Programming written by John Cheng and published by John Wiley & Sons. This book was released on 2014-09-09 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming. Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including: CUDA Programming Model GPU Execution Model GPU Memory model Streams, Event and Concurrency Multi-GPU Programming CUDA Domain-Specific Libraries Profiling and Performance Tuning The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.
Download or read book CUDA by Example written by Jason Sanders and published by Addison-Wesley Professional. This book was released on 2010-07-19 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html
Download or read book Parallel Programming with OpenACC written by Rob Farber and published by Newnes. This book was released on 2016-10-14 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. - Presents the simplest way to leverage GPUs to achieve application speedups - Shows how OpenACC works, including working examples that can be adapted for application needs - Allows readers to download source code and slides from the book's companion web page
Download or read book OpenGL Programming Guide written by Dave Shreiner and published by Addison-Wesley. This book was released on 2013-03-19 with total page 1489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes Complete Coverage of the OpenGL® Shading Language! Today’s OpenGL software interface enables programmers to produce extraordinarily high-quality computer-generated images and interactive applications using 2D and 3D objects, color images, and programmable shaders. OpenGL® Programming Guide: The Official Guide to Learning OpenGL®, Version 4.3, Eighth Edition, has been almost completely rewritten and provides definitive, comprehensive information on OpenGL and the OpenGL Shading Language. This edition of the best-selling “Red Book” describes the features through OpenGL version 4.3. It also includes updated information and techniques formerly covered in OpenGL® Shading Language (the “Orange Book”). For the first time, this guide completely integrates shader techniques, alongside classic, functioncentric techniques. Extensive new text and code are presented, demonstrating the latest in OpenGL programming techniques. OpenGL® Programming Guide, Eighth Edition, provides clear explanations of OpenGL functionality and techniques, including processing geometric objects with vertex, tessellation, and geometry shaders using geometric transformations and viewing matrices; working with pixels and texture maps through fragment shaders; and advanced data techniques using framebuffer objects and compute shaders. New OpenGL features covered in this edition include Best practices and sample code for taking full advantage of shaders and the entire shading pipeline (including geometry and tessellation shaders) Integration of general computation into the rendering pipeline via compute shaders Techniques for binding multiple shader programs at once during application execution Latest GLSL features for doing advanced shading techniques Additional new techniques for optimizing graphics program performance
Download or read book Multicore and GPU Programming written by Gerassimos Barlas and published by Elsevier. This book was released on 2014-12-16 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today's computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. - Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA - Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance - Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems - Download source code, examples, and instructor support materials on the book's companion website
Download or read book Intel Xeon Phi Coprocessor Architecture and Tools written by Rezaur Rahman and published by Apress. This book was released on 2013-09-02 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intel® Xeon Phi™ Coprocessor Architecture and Tools: The Guide for Application Developers provides developers a comprehensive introduction and in-depth look at the Intel Xeon Phi coprocessor architecture and the corresponding parallel data structure tools and algorithms used in the various technical computing applications for which it is suitable. It also examines the source code-level optimizations that can be performed to exploit the powerful features of the processor. Xeon Phi is at the heart of world’s fastest commercial supercomputer, which thanks to the massively parallel computing capabilities of Intel Xeon Phi processors coupled with Xeon Phi coprocessors attained 33.86 teraflops of benchmark performance in 2013. Extracting such stellar performance in real-world applications requires a sophisticated understanding of the complex interaction among hardware components, Xeon Phi cores, and the applications running on them. In this book, Rezaur Rahman, an Intel leader in the development of the Xeon Phi coprocessor and the optimization of its applications, presents and details all the features of Xeon Phi core design that are relevant to the practice of application developers, such as its vector units, hardware multithreading, cache hierarchy, and host-to-coprocessor communication channels. Building on this foundation, he shows developers how to solve real-world technical computing problems by selecting, deploying, and optimizing the available algorithms and data structure alternatives matching Xeon Phi’s hardware characteristics. From Rahman’s practical descriptions and extensive code examples, the reader will gain a working knowledge of the Xeon Phi vector instruction set and the Xeon Phi microarchitecture whereby cores execute 512-bit instruction streams in parallel. What you’ll learn How to calculate theoretical Gigaflops and bandwidth numbers on the hardware and measure them through code segment How to estimate latencies in fetching data from different cache hierarchies, including memory subsystems How to measure PCIe bus bandwidth between the host and coprocessor How to exploit power management and reliability features built into the hardware How to select and manipulate the best tools to tune particular Xeon Phi applications Algorithms and data structures for optimizing Xeon Phi performance Case studies of real-world Xeon Phi technical computing applications in molecular dynamics and financial simulations Who this book is for This book is for developers wishing to design and develop technical computing applications to achieve the highest performance available in the Intel Xeon Phi coprocessor hardware. It provides a solid base on the coprocessor architecture, as well as algorithm and data structure case studies for Xeon Phi coprocessor. The book may also be of interest to students and practitioners in computer engineering as a case study for massively parallel core microarchitecture of modern day processors. Table of Contents 1. Introduction to Xeon Phi Architecture 2. Programming Xeon Phi 3. Xeon Phi Vector Architecture and Instruction Set 4. Xeon Phi Core Microarchitecture 5. Xeon Phi Cache and Memory Subsystem 6. Xeon Phi PCIe Bus Data Transfer and Power Management 7. Xeon Phi System Software 8. Xeon Phi Application Development Tools 9. Xeon Phi Application Design and Implementation Considerations 10. Application Performance Tuning on Xeon Phi 11. Algorithms and Data Structures for Xeon Phi 12. Xeon Phi Application Development on Windows OS 13. OpenCL on Intel 14. Shared Memory Programming on Intel Xeon Phi