EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Approaches to Combustion Modeling

Download or read book Numerical Approaches to Combustion Modeling written by Elaine S. Oran and published by AIAA (American Institute of Aeronautics & Astronautics). This book was released on 1991 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multi dimensional Numerical Simulation of a Pulse Combustor

Download or read book Multi dimensional Numerical Simulation of a Pulse Combustor written by Daniel L. Marcus and published by . This book was released on 1994 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theoretical and Numerical Combustion

Download or read book Theoretical and Numerical Combustion written by Thierry Poinsot and published by R.T. Edwards, Inc.. This book was released on 2005 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,

Book Evaluation of Mixing and Reaction Models for Large eddy Simulation of Nonpremixed Combustion Using Direct Numerical Simulation

Download or read book Evaluation of Mixing and Reaction Models for Large eddy Simulation of Nonpremixed Combustion Using Direct Numerical Simulation written by James Clayton Sutherland and published by . This book was released on 2004 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer

Download or read book Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer written by Rogério Goncalves Dos santos and published by . This book was released on 2008 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion is one of the principal ways to produced energy used nowadays, it is also a complex phenomenon, where the turbulent flow, chemical reactions, different phases and different heat transfer phenomena can interact. Better understanding of these interactions is essential to improve the actual combustion system and to developed the new ones. The goal of this thesis is to study the interaction of the turbulent combustion with the thermal radiation by the use of three-dimensional numerical simulation. For that, using a computational tool named CORBA, a code for the combustion Large Eddy Simulation (LES) was coupled with a radiative heat transfer code. This technique allows the exchange of information between the two codes without big changes in their structure, then it is possible to take advantages of the different characteristic time from each phenomenon in a high performance parallel computational environment. In a first time, two-dimensional simulation of a turbulent propane/air premixed flame stabilized downstream a triangular flame holder has been realised. After the changing of the twodimensional radiation code for another three-dimensional one, the same configuration was simulated in 3D. A mesh with more than 4.7 millions cells for the combustion code (AVBP) and more than 3.3 millions cells for the radiation code (DOMASIUM) are used. Results show a changing in the temperature and species fields, as well as in the flame dynamics when the thermal radiation was taken into account, with a minor intensity in the three-dimensional simulations. This method, also, shows that it is possible to perform 3D complex simulations in a industrial acceptable time.

Book Modeling and Simulation of Turbulent Combustion

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Book Adaptive and Convergent Methods for Large Eddy Simulation of Turbulent Combustion

Download or read book Adaptive and Convergent Methods for Large Eddy Simulation of Turbulent Combustion written by Colin Russell Heye and published by . This book was released on 2014 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES computes the large scale mixing process accurately, thereby providing a better starting point for small-scale models that describe the combustion process. Significant effort has been made over past decades to improve accuracy and applicability of the LES approach to a wide range of flows, though the current conventions often lack consistency to the problems at hand. To this end, the two main objectives of this dissertation are to develop a dynamic transport equation-based combustion model for large- eddy simulation (LES) of turbulent spray combustion and to investigate grid- independent LES modeling for scalar mixing. Long-standing combustion modeling approaches have shown to be suc- cessful for a wide range of gas-phase flames, however, the assumptions required to derive these formulations are invalidated in the presence of liquid fuels and non-negligible evaporation rates. In the first part of this work, a novel ap- proach is developed to account for these evaporation effects and the resulting multi-regime combustion process. First, the mathematical formulation is de- rived and the numerical implementation in a low-Mach number computational solver is verified against one-dimensional and lab scale, both non-reacting and reacting spray-laden flows. In order to clarify the modeling requirements in LES for spray combustion applications, results from a suite of fully-resolved direct numerical simulations (DNS) of a spray laden planar jet flame are fil- tered at a range of length scales. LES results are then validated against two sets of experimental jet flames, one having a pilot and allowing for reduced chemistry modeling and the second requiring the use of detail chemistry with in situ tabulation to reduce the computational cost of the direct integration of a chemical mechanism. The conventional LES governing equations are derived from a low-pass filtering of the Navier-Stokes equations. In practice, the filter used to derive the LES governing equations is not formally defined and instead, it is assumed that the discretization of LES equations will implicitly act as a low-pass filter. The second part of this study investigates an alternative derivation of the LES governing equations that requires the formal definition of the filtering operator, known as explicitly filtered LES. It has been shown that decoupling the filter- ing operation from the underlying grid allows for the isolation of subfilter-scale modeling errors from numerical discretization errors. Specific to combustion modeling are the aggregate errors associated with modeling sub-filter distribu- tions of scalars that are transported by numerical impacted turbulent fields. Quantities of interest to commonly-used combustion models, including sub- filter scalar variance and filtered scalar dissipation rate, are investigated for both homogeneous and shear-driven turbulent mixing.

Book Large Eddy Simulation of a Stagnation Point Reverse Flow Combustor

Download or read book Large Eddy Simulation of a Stagnation Point Reverse Flow Combustor written by Valerio Parisi and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, numerical simulations of a low emission lab-scale non-premixed combustor are conducted and analyzed. The objectives are to provide new insight into the physical phenomena in the SPRF (Stagnation Point Reverse Flow) combustor built in the Georgia Tech Combustion Lab, and to compare three Large Eddy Simulation (LES) combustion models (Eddy Break-Up [EBU], Steady Flamelet [SF] and Linear Eddy Model [LEM]) for non-premixed combustion. The nominal operating condition of the SPRF combustor achieves very low NOx and CO emissions by combining turbulent mixing of exhaust gases with preheated reactants and chemical kinetics. The SPRF numerical simulation focuses on capturing the complex interaction between turbulent mixing and heat release. LES simulations have been carried out for a non-reactive case in order to analyze the turbulent mixing inside the combustor. The LES results have been compared to PIV experimental data and the code has been validated. The dominating features of the operational mode of the SPRF combustor (dilution of hot products into reactants, pre-heating and pre-mixing) have been analyzed, and results from the EBU-LES, SF-LES and LEM-LES simulations have been compared. Analysis shows that the LEM-LES simulation achieves the best agreement with the observed flame structure and is the only model that captures the stabilization processes observed in the experiments. EBU-LES and SF-LES do not predict the correct flow pattern because of the inaccurate modeling of sub-grid scale mixing and turbulence-combustion interaction. Limitations of these two models for this type of combustor are discussed.

Book Pulse Combustor Modeling

Download or read book Pulse Combustor Modeling written by Weiming Zhang and published by . This book was released on 1994 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sub grid Combustion Modeling for Compressible Two phase Flows

Download or read book Sub grid Combustion Modeling for Compressible Two phase Flows written by Vaidyanathan Sankaran and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A generic formulation for modeling the sub-grid combustion in compressible, high Reynolds number, two-phase, reacting flows has been developed and validated. A sub-grid mixing/combustion model called Linear Eddy Mixing (LEM) model has been extended to compressible flows and used inside the framework of Large Eddy Simulation (LES) in this LES-LEM approach. The LES-LEM approach is based on the proposition that the basic mechanistic distinction between the convective and the molecular effects should be preserved for accurate prediction of the complex flow-fields such as those encountered in many combustion systems. In LES-LEM, all the physical processes such as molecular diffusion, small and large scale turbulent convection and chemical reaction are modeled separately but concurrently at their respective time scales. This multi-scale phenomena is solved using a two-scale numerical approach, wherein molecular diffusion, small scale turbulent convection and chemical reaction are grouped as small scale processes and the convection at the (LES grid) resolved scales are deemed as the large scale processes. Small-scale processes are solved using a hybrid finite-difference Monte-carlo type approach in a one-dimensional domain. Large-scale advection on the three-dimensional LES grid is modeled in a Lagrangian manner that conserves mass. Liquid droplets (represented by computational parcels) are tracked using the Lagrangian approach wherein the Newton's equation of motion for the discrete particles are integrated explicitly in the Eulerian gas field. Drag effects due to the droplets on the gas phase and the heat transfer between the gas and the liquid phase are explicitly included. Thus, full coupling is achieved between the two phases in the simulation. Validation of the compressible LES-LEM approach is conducted by simulating the flow-field in an operational General Electric Power Systems' combustor (LM6000). The results predicted using the proposed approach compares well with the experiments and a conventional (G-equation) thin-flame model. Particle tracking algorithms used in the present study are validated by simulating droplet laden temporal mixing layers. Comparison of the energy growth in the fundamental and sub-harmonic mode in the presence and absence of the droplets shows excellent agreement with spectral DNS. Finally, to test the ability of the present two-phase LES-LEM in simulating partially premixed combustion, a LES of freely propagating partially premixed flame in a droplet-laden isotropic turbulent field is conducted. LES-LEM along with the spray models correctly captures the flame structure in the partially premixed flames. It was found that most of the fuel droplets completely vaporize before reaching the flame, and hence provides a continuous supply of reactants, which results in an intense reaction zone similar to a premixed flame. Some of the droplets that did not evaporate completely, traverse.

Book Numerical Simulation of Shock Induced Combustion

Download or read book Numerical Simulation of Shock Induced Combustion written by Myles Andrew Sussman and published by . This book was released on 1994 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Large Eddy Simulation of Premixed and Non premixed Combustion in a Stagnation Point Reverse Flow Combustor

Download or read book Large Eddy Simulation of Premixed and Non premixed Combustion in a Stagnation Point Reverse Flow Combustor written by Satish Undapalli and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A new combustor, referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high efficiency in both premixed and non-premixed modes. The objective of this thesis is to perform Large Eddy Simulations (LES) on this lab-scale combustor and explain the underlying physics. To achieve this, numerical simulations are performed in both the premixed and non-premixed combustion modes. The velocity field, species field, entrainment characteristics, flame structure, emissions and mixing characteristics are then analyzed. Simulations have been carried out first for a non-reactive case and the flow features in the combustor are analyzed. Next, the simulations have been extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures - Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Only LEMLES which is an advanced scalar approach is able to accurately predict both the velocity and species field in the combustor. The results from LEM with LES (LEMLES) using a reduced chemical mechanism have been analyzed in the premixed mode. The results showed that mass entrainment occurs along the shear layer in the combustor. The entrained mass carried products into the reactant stream and provided preheating. The product entrainment enhances the reaction rates and stabilizes the flame even at very lean conditions. These products are shown to enter into the flame through local extinction zones present on the flame surface. The flame structure is further analyzed and the combustion mode is found to be primarily in thin reaction zones. The emissions in the combustor are studied using simple global mechanisms for NOx. Computations show extremely low NOx values comparable to the measured emissions. These low emissions are shown to be primarily due to the low temperatures in the combustor. LEMLES computations are also performed with detailed chemistry to capture more accurately the flame structure. The flame in the detailed chemistry case is more sensitive to strain effects and show more extinction zones very near to the injector. LEMLES approach is also used to resolve the combustion mode in the non-premixed case. The studies indicate that mixing of fuel and air close to the injector controls the combustion process. The predictions in the near field are shown to be very sensitive to the inflow conditions. Analysis shows that fuel and air mixing occurs to lean proportions in the combustor before any burning takes place. The flame structure in the non-premixed mode is very similar to the premixed mode. Along with fuel-air mixing, the products also mix with the reactants and provide the preheating effects to stabilize the flame in the downstream region of the combustor.

Book Numerical Simulations of Turbulent Combustion

Download or read book Numerical Simulations of Turbulent Combustion written by Andrei Lipatnikov and published by Mdpi AG. This book was released on 2020-07 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent burning of gaseous fuels is widely used for energy conversion in stationary power generation, e.g., gas turbines, land transportation, piston engines, and aviation, and aero-engine afterburners. Nevertheless, our fundamental understanding of turbulent combustion is still limited, because it is a highly non-linear and multiscale process that involves various local phenomena and thousands (e.g., for gasoline-air mixtures) of chemical reactions between hundreds of species, including several reactions that control emissions from flames. Therefore, there is a strong need for elaborating high fidelity, advanced numerical models, and methods that will catch the governing physical mechanisms of flame-turbulence interaction and, consequently, will make turbulent combustion computations an efficient predictive tool for applied research and, in particular, for development of a new generation of ultra-clean and highly efficient internal combustion engines that will allow society to properly respond to current environmental and efficiency challenges. Accordingly, papers published in this Special Issue (i) contribute to our fundamental understanding of flame-turbulence interaction by analyzing results of unsteady multi-dimensional numerical simulations and (ii) develop and validate high-fidelity models and efficient numerical methods for computational fluid Dynamics research into turbulent combustion in laboratory burners and engines.

Book A Sectored One Dimensional Model for Simulating Combustion Instabilities in Premix Combustors

Download or read book A Sectored One Dimensional Model for Simulating Combustion Instabilities in Premix Combustors written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-15 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-dimensional, CFD based combustor simulation has been developed that exhibits self-excited, thermoacoustic oscillations in premixed combustor geometries that typically have large, abrupt changes in cross sectional area. The combustor geometry is approximated by dividing it into a finite number of one-dimensional sectors. Within each sector, the equations of motion are integrated numerically, along with a species transport and a reaction equation. Across the sectors, mass and energy are conserved, and momentum loss is prescribed using appropriately compatible boundary conditions that account for the area change. The resulting simulation and associated boundary conditions essentially represent a one-dimensional, multi-block technique. Details of the simulation code are presented herein. Results are then shown comparing experimentally observed and simulated operation of a particular combustor rig that exhibited different instabilities at different operating points. It will be shown that the simulation closely matched the rig data in oscillation amplitudes, frequencies, and operating points at which the instabilities occurred. Finally, advantages and limitations of the simulation technique are discussed. Paxson, Daniel E. Glenn Research Center NASA/TM-1999-209771, NAS 1.15:209771, AIAA Paper 2000-0313, E-12051