Download or read book One dimensional Functional Equations written by Genrich Belitskii and published by Birkhäuser. This book was released on 2012-12-06 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph is devoted to the study of functional equations with the transformed argument on the real line and on the unit circle. Such equations systematically arise in dynamical systems, differential equations, probabilities, singularities of smooth mappings, and other areas. The purpose of the book is to present modern methods and new results in the subject, with an emphasis on a connection between local and global solvability. The general concepts developed in the book are applicable to multidimensional functional equations. Some of the methods are presented for the first time in the monograph literature. The book is addressed to graduates and researchers interested in dynamical systems, differential equations, operator theory, or the theory of functions and their applications.
Download or read book Functional Equations and How to Solve Them written by Christopher G. Small and published by Springer Science & Business Media. This book was released on 2007-04-03 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.
Download or read book Analytic Solutions of Functional Equations written by Sui Sun Cheng and published by World Scientific. This book was released on 2008 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a self-contained and unified introduction to the properties of analytic functions. Based on recent research results, it provides many examples of functional equations to show how analytic solutions can be found.Unlike in other books, analytic functions are treated here as those generated by sequences with positive radii of convergence. By developing operational means for handling sequences, functional equations can then be transformed into recurrence relations or difference equations in a straightforward manner. Their solutions can also be found either by qualitative means or by computation. The subsequent formal power series function can then be asserted as a true solution once convergence is established by various convergence tests and majorization techniques. Functional equations in this book may also be functional differential equations or iterative equations, which are different from the differential equations studied in standard textbooks since composition of known or unknown functions are involved.
Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Download or read book An Introduction to the Theory of Functional Equations and Inequalities written by Marek Kuczma and published by Springer Science & Business Media. This book was released on 2009-03-12 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish school of functional equations and inequalities. "The second half of the title of this book describes its contents adequately. Probably even the most devoted specialist would not have thought that about 300 pages can be written just about the Cauchy equation (and on some closely related equations and inequalities). And the book is by no means chatty, and does not even claim completeness. Part I lists the required preliminary knowledge in set and measure theory, topology and algebra. Part II gives details on solutions of the Cauchy equation and of the Jensen inequality [...], in particular on continuous convex functions, Hamel bases, on inequalities following from the Jensen inequality [...]. Part III deals with related equations and inequalities (in particular, Pexider, Hosszú, and conditional equations, derivations, convex functions of higher order, subadditive functions and stability theorems). It concludes with an excursion into the field of extensions of homomorphisms in general." (Janos Aczel, Mathematical Reviews) "This book is a real holiday for all the mathematicians independently of their strict speciality. One can imagine what deliciousness represents this book for functional equationists." (B. Crstici, Zentralblatt für Mathematik)
Download or read book Implicit Functions and Solution Mappings written by Asen L. Dontchev and published by Springer. This book was released on 2014-06-18 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.
Download or read book An Introduction to Integrable Techniques for One Dimensional Quantum Systems written by Fabio Franchini and published by Springer. This book was released on 2017-05-25 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.
Download or read book Functional Equations and Inequalities with Applications written by Palaniappan Kannappan and published by Springer Science & Business Media. This book was released on 2009-06-10 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.
Download or read book Singular Integral Equations written by N. I. Muskhelishvili and published by Courier Corporation. This book was released on 2013-02-19 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div
Download or read book On the Functional Equations Satisfied by Eisenstein Series written by Robert P. Langlands and published by Springer. This book was released on 2006-11-14 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Volterra Integral and Functional Equations written by G. Gripenberg and published by Cambridge University Press. This book was released on 1990 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the theories of Volterra integral and functional equations.
Download or read book Techniques of Functional Analysis for Differential and Integral Equations written by Paul Sacks and published by Academic Press. This book was released on 2017-05-16 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics
Download or read book Modern Discrete Mathematics and Analysis written by Nicholas J. Daras and published by Springer. This book was released on 2018-07-05 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of modern research in analysis and discrete mathematics is provided in this book along with applications in cryptographic methods and information security, in order to explore new techniques, methods, and problems for further investigation. Distinguished researchers and scientists in analysis and discrete mathematics present their research. Graduate students, scientists and engineers, interested in a broad spectrum of current theories, methods, and applications in interdisciplinary fields will find this book invaluable.
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Download or read book Iterative Functional Equations written by Marek Kuczma and published by Cambridge University Press. This book was released on 1990-07-27 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cohesive and comprehensive account of the modern theory of iterative functional equations. Many of the results included have appeared before only in research literature, making this an essential volume for all those working in functional equations and in such areas as dynamical systems and chaos, to which the theory is closely related. The authors introduce the reader to the theory and then explore the most recent developments and general results. Fundamental notions such as the existence and uniqueness of solutions to the equations are stressed throughout, as are applications of the theory to such areas as branching processes, differential equations, ergodic theory, functional analysis and geometry. Other topics covered include systems of linear and nonlinear equations of finite and infinite ORD various function classes, conjugate and commutable functions, linearization, iterative roots of functions, and special functional equations.
Download or read book One Dimensional Dynamics written by Welington de Melo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).
Download or read book Functional Equations in Applied Sciences written by Enrique Castillo and published by Elsevier. This book was released on 2004-11-04 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides the reader with the different types of functional equations that s/he can find in practice, showing, step by step, how they can be solved.A general methodology for solving functional equations is provided in Chapter 2. The different types of functional equations are described and solved in Chapters 3 to 8. Many examples, coming from different fields, as geometry, science, engineering, economics, probability, statistics, etc, help the reader to change his/her mind in order to state problems as functional equations as an alternative to differential equations, and to state new problems in terms of functional equations or systems.An interesting feature of the book is that it deals with functional networks, a powerful generalization of neural networks that allows solving many practical problems. The second part of the book, Chapters 9 to 13, is devoted to the applications of this important paradigm.The book contains many examples and end of chapter exercises, that facilitates the understanding of the concepts and applications.· A general methodology for solving functional equations is provided in Chapter 2.· It deals with functional networks, a powerful generalization of neural networks.· Many examples, coming from different fields, as geometry, science, engineering, economics, probability, statistics, etc, illustrate the concept of functional equation.· Functional equations are presented as a powerful alternative to differential equations. · The book contains end of chapter exercises.