Download or read book The Theory of Lattice Ordered Groups written by V.M. Kopytov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.
Download or read book Lattice Ordered Groups written by M.E Anderson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].
Download or read book Lattices and Ordered Algebraic Structures written by T.S. Blyth and published by Springer Science & Business Media. This book was released on 2005-04-18 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS
Download or read book Theory of Lattice Ordered Groups written by Michael Darnel and published by CRC Press. This book was released on 1994-11-15 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough discussion of the orderability of a group. The book details the major developments in the theory of lattice-ordered groups, delineating standard approaches to structural and permutation representations. A radically new presentation of the theory of varieties of lattice-ordered groups is offered.;This work is intended for pure and applied mathematicians and algebraists interested in topics such as group, order, number and lattice theory, universal algebra, and representation theory; and upper-level undergraduate and graduate students in these disciplines.;College or university bookstores may order five or more copies at a special student price which is available from Marcel Dekker Inc, upon request.
Download or read book Theory of Lattice Ordered Groups written by Michael Darnel and published by CRC Press. This book was released on 2021-12-17 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough discussion of the orderability of a group. The book details the major developments in the theory of lattice-ordered groups, delineating standard approaches to structural and permutation representations. A radically new presentation of the theory of varieties of lattice-ordered groups is offered.;This work is intended for pure and applied mathematicians and algebraists interested in topics such as group, order, number and lattice theory, universal algebra, and representation theory; and upper-level undergraduate and graduate students in these disciplines.;College or university bookstores may order five or more copies at a special student price which is available from Marcel Dekker Inc, upon request.
Download or read book Lattice Ordered Groups written by A.M. Glass and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: A lattice-ordered group is a mathematical structure combining a (partial) order (lattice) structure and a group structure (on a set) in a compatible way. Thus it is a composite structure, or, a set carrying two or more simple structures in a compatible way. The field of lattice-ordered groups turn up on a wide range of mathematical fields ranging from functional analysis to universal algebra. These papers address various aspects of the field, with wide applicability for interested researchers.
Download or read book Lecture Notes On Algebraic Structure Of Lattice ordered Rings written by Jingjing Ma and published by World Scientific. This book was released on 2014-03-14 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Structure of Lattice-Ordered Rings presents an introduction to the theory of lattice-ordered rings and some new developments in this area in the last 10-15 years. It aims to provide the reader with a good foundation in the subject, as well as some new research ideas and topic in the field.This book may be used as a textbook for graduate and advanced undergraduate students who have completed an abstract algebra course including general topics on group, ring, module, and field. It is also suitable for readers with some background in abstract algebra and are interested in lattice-ordered rings to use as a self-study book.The book is largely self-contained, except in a few places, and contains about 200 exercises to assist the reader to better understand the text and practice some ideas.
Download or read book Ordered Algebraic Structures written by Jorge Martínez and published by Springer Science & Business Media. This book was released on 2002-08-31 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication surveys some of the disciplines within ordered algebraic structures and also contains chapters highlighting a broad spectrum of research interests. In all, this book represents a reasonably accurate cross-section of the state of the art in ordered algebraic structures.
Download or read book Ordered Algebraic Structures written by Jorge Martínez and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of papers presented at the 1991 Conrad Conference, held in Gainesville, Florida, USA, in December, 1991. Together, these give an overview of some recent advances in the area of ordered algebraic structures. The first part of the book is devoted to ordered permutation groups and universal, as well as model-theoretic, aspects. The second part deals with material variously connected to general topology and functional analysis. Collectively, the contents of the book demonstrate the wide applicability of order-theoretic methods, and how ordered algebraic structures have connections with many research disciplines. For researchers and graduate students whose work involves ordered algebraic structures.
Download or read book Ordered Groups and Infinite Permutation Groups written by W.C. Holland and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subjects of ordered groups and of infinite permutation groups have long en joyed a symbiotic relationship. Although the two subjects come from very different sources, they have in certain ways come together, and each has derived considerable benefit from the other. My own personal contact with this interaction began in 1961. I had done Ph. D. work on sequence convergence in totally ordered groups under the direction of Paul Conrad. In the process, I had encountered "pseudo-convergent" sequences in an ordered group G, which are like Cauchy sequences, except that the differences be tween terms of large index approach not 0 but a convex subgroup G of G. If G is normal, then such sequences are conveniently described as Cauchy sequences in the quotient ordered group GIG. If G is not normal, of course GIG has no group structure, though it is still a totally ordered set. The best that can be said is that the elements of G permute GIG in an order-preserving fashion. In independent investigations around that time, both P. Conrad and P. Cohn had showed that a group admits a total right ordering if and only if the group is a group of automor phisms of a totally ordered set. (In a right ordered group, the order is required to be preserved by all right translations, unlike a (two-sided) ordered group, where both right and left translations must preserve the order.
Download or read book Ordered Algebraic Structures written by W. B. Powell and published by CRC Press. This book was released on 1985-10-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers contained in this volume constitute the proceedings of the Special Session on Ordered Algebraic Structures which was held at the 1982 annual meeting of the American Mathematical Society in Cincinnati, Ohio. The Special Session and this volume honor Paul Conrad, whose work on the subject is noted for its depth and originality. These papers address many areas within the subject of ordered algebraic structures, including varieties, free algebras, lattice ordered groups, subgroups of ordered groups, semigroups, ordered rings, and topological properties of these structures.
Download or read book Partially Ordered Groups written by A M W Glass and published by World Scientific. This book was released on 1999-07-22 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently the theory of partially ordered groups has been used by analysts, algebraists, topologists and model theorists. This book presents the most important results and topics in the theory with proofs that rely on (and interplay with) other areas of mathematics. It concludes with a list of some unsolved problems for the reader to tackle. In stressing both the special techniques of the discipline and the overlap with other areas of pure mathematics, the book should be of interest to a wide audience in diverse areas of mathematics.
Download or read book Algebra Carbondale 1980 written by Ralph K. Amayo and published by Springer. This book was released on 2006-11-15 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Universal Algebra and Lattice Theory written by R.S. Freese and published by Springer. This book was released on 2006-11-15 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Ordered Permutation Groups written by Andrew Martin William Glass and published by Cambridge University Press. This book was released on 1981 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals.
Download or read book Right Ordered Groups written by Valeriĭ Matveevich Kopytov and published by Springer Science & Business Media. This book was released on 1996-04-30 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of right-ordered groups is fundamental in theories of I-groups, ordered groups, torsion-free groups, and the theory of zero-divisors free rings, as well as in theoretical physics. Right-Ordered Groups is the first book to provide a systematic presentation of right-ordered group theory, describing all known and new results in the field. The volume addresses topics such as right-ordered groups and order permutation groups, the system of convex subgroups of a right-ordered group, and free products of right-ordered groups.
Download or read book Lattice Ordered Groups written by A.M. Glass and published by Springer Science & Business Media. This book was released on 1989-03-31 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: A lattice-ordered group is a mathematical structure combining a (partial) order (lattice) structure and a group structure (on a set) in a compatible way. Thus it is a composite structure, or, a set carrying two or more simple structures in a compatible way. The field of lattice-ordered groups turn up on a wide range of mathematical fields ranging from functional analysis to universal algebra. These papers address various aspects of the field, with wide applicability for interested researchers.