Download or read book Algebraic Analysis of Differential Equations written by T. Aoki and published by Springer Science & Business Media. This book was released on 2009-03-15 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains 23 articles on algebraic analysis of differential equations and related topics, most of which were presented as papers at the conference "Algebraic Analysis of Differential Equations – from Microlocal Analysis to Exponential Asymptotics" at Kyoto University in 2005. This volume is dedicated to Professor Takahiro Kawai, who is one of the creators of microlocal analysis and who introduced the technique of microlocal analysis into exponential asymptotics.
Download or read book Virtual Turning Points written by Naofumi Honda and published by Springer. This book was released on 2015-07-07 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the Noumi–Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.
Download or read book Algebraic Analysis of Singular Perturbation Theory written by Takahiro Kawai and published by American Mathematical Soc.. This book was released on 2005 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.
Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Divergent Series Summability and Resurgence III written by Eric Delabaere and published by Springer. This book was released on 2016-06-28 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called “bridge equation”, which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. The prerequisites are a working knowledge of complex analysis at the first-year graduate level and of the theory of resurgence, as presented in volume 1.
Download or read book Handbook of Geometry and Topology of Singularities VI Foliations written by Felipe Cano and published by Springer Nature. This book was released on with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Painlev III A Case Study in the Geometry of Meromorphic Connections written by Martin A. Guest and published by Springer. This book was released on 2017-10-14 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this monograph is two-fold: it introduces a conceptual language for the geometrical objects underlying Painlevé equations, and it offers new results on a particular Painlevé III equation of type PIII (D6), called PIII (0, 0, 4, −4), describing its relation to isomonodromic families of vector bundles on P1 with meromorphic connections. This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics. It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections. Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R>0 (with or without singularities) are addressed. These provide examples of variations of TERP structures, which are related to tt∗ geometry and harmonic bundles. As an application, a new global picture o0 is given.
Download or read book Differential Equations and Exact WKB Analysis written by and published by . This book was released on 2008 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Exact Solutions for Ordinary Differential Equations written by Valentin F. Zaitsev and published by CRC Press. This book was released on 2002-10-28 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exact solutions of differential equations continue to play an important role in the understanding of many phenomena and processes throughout the natural sciences in that they can verify the correctness of or estimate errors in solutions reached by numerical, asymptotic, and approximate analytical methods. The new edition of this bestselling handboo
Download or read book Painleve Transcendents written by A. S. Fokas and published by American Mathematical Soc.. This book was released on 2006 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtainedanswering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutionsof the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points, play a crucial role in the applications of these functions. It is shown in this book, that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called theRiemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail theRiemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.
Download or read book Proceedings of the Japan Academy written by Nihon Gakushiin and published by . This book was released on 2007 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Painlev Equations and Related Topics written by Alexander D. Bruno and published by Walter de Gruyter. This book was released on 2012-08-31 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a proceedings of the international conference "Painlevé Equations and Related Topics" which was taking place at the Euler International Mathematical Institute, a branch of the Saint Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of Sciences, in Saint Petersburg on June 17 to 23, 2011. The survey articles discuss the following topics: General ordinary differential equations Painlevé equations and their generalizations Painlevé property Discrete Painlevé equations Properties of solutions of all mentioned above equations: – Asymptotic forms and asymptotic expansions – Connections of asymptotic forms of a solution near different points – Convergency and asymptotic character of a formal solution – New types of asymptotic forms and asymptotic expansions – Riemann-Hilbert problems – Isomonodromic deformations of linear systems – Symmetries and transformations of solutions – Algebraic solutions Reductions of PDE to Painlevé equations and their generalizations Ordinary Differential Equations systems equivalent to Painlevé equations and their generalizations Applications of the equations and the solutions
Download or read book Discrete Painlev Equations written by Nalini Joshi and published by American Mathematical Soc.. This book was released on 2019-05-30 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Painlevé equations are nonlinear difference equations, which arise from translations on crystallographic lattices. The deceptive simplicity of this statement hides immensely rich mathematical properties, connecting dynamical systems, algebraic geometry, Coxeter groups, topology, special functions theory, and mathematical physics. This book necessarily starts with introductory material to give the reader an accessible entry point to this vast subject matter. It is based on lectures that the author presented as principal lecturer at a Conference Board of Mathematical Sciences and National Science Foundation conference in Texas in 2016. Instead of technical theorems or complete proofs, the book relies on providing essential points of many arguments through explicit examples, with the hope that they will be useful for applied mathematicians and physicists.
Download or read book Geometry Topology and Mathematical Physics written by V. M. Buchstaber and published by American Mathematical Soc.. This book was released on 2008-01-01 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of papers based on presentations given in 2006-2007 at the S. P. Novikov Seminar at the Steklov Mathematical Institute in Moscow. Novikov's diverse interests are reflected in the topics presented in the book. The articles address topics in geometry, topology, and mathematical physics. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.
Download or read book Painlev Transcendents written by Athanassios S. Fokas and published by American Mathematical Society. This book was released on 2023-11-20 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the turn of the twentieth century, the French mathematician Paul Painlevé and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painlevé I–VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painlevé transcendents (i.e., the solutions of the Painlevé equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painlevé equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painlevé transcendents. This striking fact, apparently unknown to Painlevé and his contemporaries, is the key ingredient for the remarkable applicability of these “nonlinear special functions”. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painlevé functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painlevé equations and related areas.
Download or read book Asymptotics in Dynamics Geometry and PDEs Generalized Borel Summation written by Ovidiu Costin and published by Springer Science & Business Media. This book was released on 2012-02-21 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of a one-week international conference centered on asymptotic analysis and its applications. They contain major contributions dealing with: mathematical physics: PT symmetry, perturbative quantum field theory, WKB analysis, local dynamics: parabolic systems, small denominator questions, new aspects in mould calculus, with related combinatorial Hopf algebras and application to multizeta values, a new family of resurgent functions related to knot theory.