Download or read book Thirteen papers on functional analysis and differential equations written by V. I. Arnol_d and published by American Mathematical Soc.. This book was released on 1968-12-31 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Differential Equations Ordinary Differential Equations written by Flaviano Battelli and published by Elsevier. This book was released on 2008-08-19 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real-world applications - Written for mathematicians and scientists of many related fields
Download or read book Stability of Linear Systems Some Aspects of Kinematic Similarity written by Harris and published by Academic Press. This book was released on 1980-10-02 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stability of Linear Systems: Some Aspects of Kinematic Similarity
Download or read book Arnold s Problems written by Vladimir I. Arnold and published by Springer Science & Business Media. This book was released on 2004-06-24 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vladimir Arnold is one of the most outstanding mathematicians of our time Many of these problems are at the front line of current research
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Download or read book Metrical Almost Periodicity and Applications to Integro Differential Equations written by Marko Kostić and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-06-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of almost periodic functions is a very active field of research for scholars. This research monograph analyzes various classes of multi-dimensional metrically almost periodic type functions with values in complex Banach spaces. We provide many applications of our theoretical results to the abstract Volterra integro-differential inclusions in Banach spaces.
Download or read book Countable Systems of Differential Equations written by Anatolii M. Samoilenko and published by Walter de Gruyter. This book was released on 2011-07-11 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the solution of various problems in the theory of differential equations in the space "M" of bounded numerical sequences (called countable systems). In particular, the general theory of countable systems, the theory of oscillating solutions, and the theory of countable systems with pulse action are treated. Main attention is given to generalization of the results of numerous authors, obtained in recent years for finite-dimensional systems of different equations to the case of systems from the analysed class. The book contains the following four chapters: - General concepts of the theory of infinite systems of differential equations - Invariant tori - Reducibility of linear systems - Impulsive systems This book will be of value and interest to anyone working in this field of differential equations.
Download or read book Elements of Mathematical Theory of Evolutionary Equations in Banach Spaces written by Anatoly M. Samoilenko and published by World Scientific. This book was released on 2013 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary equations are studied in abstract Banach spaces and in spaces of bounded number sequences. For linear and nonlinear difference equations, which are defined on finite-dimensional and infinite-dimensional tori, the problem of reducibility is solved, in particular, in neighborhoods of their invariant sets, and the basics for a theory of invariant tori and bounded semi-invariant manifolds are established. Also considered are the questions on existence and approximate construction of periodic solutions for difference equations in infinite-dimensional spaces and the problem of extendibility of the solutions in degenerate cases. For nonlinear differential equations in spaces of bounded number sequences, new results are obtained in the theory of countable-point boundary-value problems. The book contains new mathematical results that will be useful towards advances in nonlinear mechanics and theoretical physics.
Download or read book Dynamical Systems and Small Divisors written by Hakan Eliasson and published by Springer. This book was released on 2004-10-11 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems of stability in the theory of dynamical systems face the difficulty of small divisors. The most famous example is probably given by Kolmogorov-Arnold-Moser theory in the context of Hamiltonian systems, with many applications to physics and astronomy. Other natural small divisor problems arise considering circle diffeomorphisms or quasiperiodic Schroedinger operators. In this volume Hakan Eliasson, Sergei Kuksin and Jean-Christophe Yoccoz illustrate the most recent developments of this theory both in finite and infinite dimension. A list of open problems (including some problems contributed by John Mather and Michel Herman) has been included.
Download or read book Quasi Periodic Motions in Families of Dynamical Systems written by Hendrik W. Broer and published by Springer. This book was released on 2009-01-25 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. Such a motion in the phase space densely fills up an invariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori. On the other hand, systems exist that are entirely chaotic on each energy level. In between we know systems that, being sufficiently small perturbations of integrable ones, exhibit coexistence of order (invariant tori carrying quasi-periodic dynamics) and chaos (the so called stochastic layers). The Kolmogorov-Arnol'd-Moser (KAM) theory on quasi-periodic motions tells us that the occurrence of such motions is open within the class of all Hamiltonian systems: in other words, it is a phenomenon persistent under small Hamiltonian perturbations. Moreover, generally, for any such system the union of quasi-periodic tori in the phase space is a nowhere dense set of positive Lebesgue measure, a so called Cantor family. This fact implies that open classes of Hamiltonian systems exist that are not ergodic. The main aim of the book is to study the changes in this picture when other classes of systems - or contexts - are considered.
Download or read book Form Symmetries and Reduction of Order in Difference Equations written by Hassan Sedaghat and published by CRC Press. This book was released on 2011-05-24 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Form Symmetries and Reduction of Order in Difference Equations presents a new approach to the formulation and analysis of difference equations in which the underlying space is typically an algebraic group. In some problems and applications, an additional algebraic or topological structure is assumed in order to define equations and obtain significant results about them. Reflecting the author’s past research experience, the majority of examples involve equations in finite dimensional Euclidean spaces. The book first introduces difference equations on groups, building a foundation for later chapters and illustrating the wide variety of possible formulations and interpretations of difference equations that occur in concrete contexts. The author then proposes a systematic method of decomposition for recursive difference equations that uses a semiconjugate relation between maps. Focusing on large classes of difference equations, he shows how to find the semiconjugate relations and accompanying factorizations of two difference equations with strictly lower orders. The final chapter goes beyond semiconjugacy by extending the fundamental ideas based on form symmetries to nonrecursive difference equations. With numerous examples and exercises, this book is an ideal introduction to an exciting new domain in the area of difference equations. It takes a fresh and all-inclusive look at difference equations and develops a systematic procedure for examining how these equations are constructed and solved.
Download or read book Coherent Transform Quantization and Poisson Geometry written by Mikhail Vladimirovich Karasev and published by American Mathematical Soc.. This book was released on 1998 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume copntains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs.
Download or read book Differential Equations written by K.D. Elworthy and published by Routledge. This book was released on 2017-11-22 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents recent developments in the areas of differential equations, dynamical systems, and control of finke and infinite dimensional systems. Focuses on current trends in differential equations and dynamical system research-from Darameterdependence of solutions to robui control laws for inflnite dimensional systems.
Download or read book Regularity and Stochasticity of Nonlinear Dynamical Systems written by Dimitri Volchenkov and published by Springer. This book was released on 2017-06-24 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent developments in nonlinear dynamics and physics with an emphasis on complex systems. The contributors provide recent theoretic developments and new techniques to solve nonlinear dynamical systems and help readers understand complexity, stochasticity, and regularity in nonlinear dynamical systems. This book covers integro-differential equation solvability, Poincare recurrences in ergodic systems, orientable horseshoe structure, analytical routes of periodic motions to chaos, grazing on impulsive differential equations, from chaos to order in coupled oscillators, and differential-invariant solutions for automorphic systems, inequality under uncertainty.
Download or read book Hyperbolicity In Delay Equations written by Luis Barreira and published by World Scientific. This book was released on 2021-03-12 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the study of hyperbolicity in both linear and nonlinear delay equations. This includes a self-contained discussion of the foundations, main results and essential techniques, with emphasis on important parts of the theory that apply to a large class of delay equations. The central theme is always hyperbolicity and only topics that are directly related to it are included. Among these are robustness, admissibility, invariant manifolds, and spectra, which play important roles in life sciences, engineering and control theory, especially in delayed feedback mechanisms.The book is dedicated to researchers as well as graduate students specializing in differential equations and dynamical systems who wish to have an extensive and in-depth view of the hyperbolicity theory of delay equations. It can also be used as a basis for graduate courses on the stability and hyperbolicity of delay equations.
Download or read book Mathematical Reviews written by and published by . This book was released on 1997 with total page 1164 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Smooth Ergodic Theory and Its Applications written by A. B. Katok and published by American Mathematical Soc.. This book was released on 2001 with total page 895 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.