EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Recent Advances and Future Directions in Causality  Prediction  and Specification Analysis

Download or read book Recent Advances and Future Directions in Causality Prediction and Specification Analysis written by Xiaohong Chen and published by Springer Science & Business Media. This book was released on 2012-08-01 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles that present the most recent cutting edge results on specification and estimation of economic models written by a number of the world’s foremost leaders in the fields of theoretical and methodological econometrics. Recent advances in asymptotic approximation theory, including the use of higher order asymptotics for things like estimator bias correction, and the use of various expansion and other theoretical tools for the development of bootstrap techniques designed for implementation when carrying out inference are at the forefront of theoretical development in the field of econometrics. One important feature of these advances in the theory of econometrics is that they are being seamlessly and almost immediately incorporated into the “empirical toolbox” that applied practitioners use when actually constructing models using data, for the purposes of both prediction and policy analysis and the more theoretically targeted chapters in the book will discuss these developments. Turning now to empirical methodology, chapters on prediction methodology will focus on macroeconomic and financial applications, such as the construction of diffusion index models for forecasting with very large numbers of variables, and the construction of data samples that result in optimal predictive accuracy tests when comparing alternative prediction models. Chapters carefully outline how applied practitioners can correctly implement the latest theoretical refinements in model specification in order to “build” the best models using large-scale and traditional datasets, making the book of interest to a broad readership of economists from theoretical econometricians to applied economic practitioners.

Book High Dimensional Statistics

Download or read book High Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data.

Book Robust and Multivariate Statistical Methods

Download or read book Robust and Multivariate Statistical Methods written by Mengxi Yi and published by Springer Nature. This book was released on 2023-04-19 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent developments in multivariate and robust statistical methods. Featuring contributions by leading experts in the field it covers various topics, including multivariate and high-dimensional methods, time series, graphical models, robust estimation, supervised learning and normal extremes. It will appeal to statistics and data science researchers, PhD students and practitioners who are interested in modern multivariate and robust statistics. The book is dedicated to David E. Tyler on the occasion of his pending retirement and also includes a review contribution on the popular Tyler’s shape matrix.

Book Financial Mathematics  Volatility and Covariance Modelling

Download or read book Financial Mathematics Volatility and Covariance Modelling written by Julien Chevallier and published by Routledge. This book was released on 2019-06-28 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an up-to-date series of advanced chapters on applied financial econometric techniques pertaining the various fields of commodities finance, mathematics & stochastics, international macroeconomics and financial econometrics. Financial Mathematics, Volatility and Covariance Modelling: Volume 2 provides a key repository on the current state of knowledge, the latest debates and recent literature on financial mathematics, volatility and covariance modelling. The first section is devoted to mathematical finance, stochastic modelling and control optimization. Chapters explore the recent financial crisis, the increase of uncertainty and volatility, and propose an alternative approach to deal with these issues. The second section covers financial volatility and covariance modelling and explores proposals for dealing with recent developments in financial econometrics This book will be useful to students and researchers in applied econometrics; academics and students seeking convenient access to an unfamiliar area. It will also be of great interest established researchers seeking a single repository on the current state of knowledge, current debates and relevant literature.

Book Functional and Operatorial Statistics

Download or read book Functional and Operatorial Statistics written by Sophie Dabo-Niang and published by Springer Science & Business Media. This book was released on 2008-05-21 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: An increasing number of statistical problems and methods involve infinite-dimensional aspects. This is due to the progress of technologies which allow us to store more and more information while modern instruments are able to collect data much more effectively due to their increasingly sophisticated design. This evolution directly concerns statisticians, who have to propose new methodologies while taking into account such high-dimensional data (e.g. continuous processes, functional data, etc.). The numerous applications (micro-arrays, paleo- ecological data, radar waveforms, spectrometric curves, speech recognition, continuous time series, 3-D images, etc.) in various fields (biology, econometrics, environmetrics, the food industry, medical sciences, paper industry, etc.) make researching this statistical topic very worthwhile. This book gathers important contributions on the functional and operatorial statistics fields.

Book Sparse Graphical Modeling for High Dimensional Data

Download or read book Sparse Graphical Modeling for High Dimensional Data written by Faming Liang and published by CRC Press. This book was released on 2023-08-02 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selection Effective methods of high-dimensional inference

Book Robust Statistics

    Book Details:
  • Author : Ricardo A. Maronna
  • Publisher : John Wiley & Sons
  • Release : 2019-01-04
  • ISBN : 1119214688
  • Pages : 466 pages

Download or read book Robust Statistics written by Ricardo A. Maronna and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Book Robust Statistical Procedures

Download or read book Robust Statistical Procedures written by Peter J. Huber and published by SIAM. This book was released on 1996-01-01 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a brief, well-organized, and easy-to-follow introduction and overview of robust statistics. Huber focuses primarily on the important and clearly understood case of distribution robustness, where the shape of the true underlying distribution deviates slightly from the assumed model (usually the Gaussian law). An additional chapter on recent developments in robustness has been added and the reference list has been expanded and updated from the 1977 edition.

Book Regularized System Identification

Download or read book Regularized System Identification written by Gianluigi Pillonetto and published by Springer Nature. This book was released on 2022-05-13 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors’ reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods. The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science. This is an open access book.

Book Probability Models

Download or read book Probability Models written by and published by Elsevier. This book was released on 2024-10-24 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability Models, Volume 51 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on Stein's methods, Probabilities and thermodynamics third law, Random Matrix Theory, General tools for understanding fluctuations of random variables, An approximation scheme to compute the Fisher-Rao distance between multivariate normal distributions, Probability Models Applied to Reliability and Availability Engineering, Backward stochastic differential equation– Stochastic optimization theory and viscous solution of HJB equation, and much more.Additional chapters cover Probability Models in Machine Learning, The recursive stochastic algorithm, randomized urn models and response-adaptive randomization in clinical trials, Random matrix theory: local laws and applications, KOO methods and their high-dimensional consistencies in some multivariate models, Fourteen Lectures on Inference for Stochastic Processes, and A multivariate cumulative damage model and some applications. - Provides the latest information on probability models - Offers outstanding and original reviews on a range of probability models research topics - Serves as an indispensable reference for researchers and students alike

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1991 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Random Matrix Methods for Machine Learning

Download or read book Random Matrix Methods for Machine Learning written by Romain Couillet and published by Cambridge University Press. This book was released on 2022-07-21 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website.

Book Statistical Foundations of Data Science

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Book Applied Nonparametric Statistics in Reliability

Download or read book Applied Nonparametric Statistics in Reliability written by M. Luz Gámiz and published by Springer Science & Business Media. This book was released on 2011-02-14 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. Applied Nonparametric Statistics in Reliability is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB®. A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. Applied Nonparametric Statistics in Reliability will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.

Book Journal of the Royal Statistical Society

Download or read book Journal of the Royal Statistical Society written by and published by . This book was released on 2006 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Econometrics

Download or read book Handbook of Econometrics written by James J. Heckman and published by Elsevier. This book was released on 2009-01-13 with total page 1057 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sparse Modeling

Download or read book Sparse Modeling written by Irina Rish and published by CRC Press. This book was released on 2014-12-01 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing. Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field. The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions. The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.