EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Solving the Pell Equation

    Book Details:
  • Author : Michael Jacobson
  • Publisher : Springer Science & Business Media
  • Release : 2008-12-02
  • ISBN : 038784922X
  • Pages : 504 pages

Download or read book Solving the Pell Equation written by Michael Jacobson and published by Springer Science & Business Media. This book was released on 2008-12-02 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pell’s Equation is a very simple Diophantine equation that has been known to mathematicians for over 2000 years. Even today research involving this equation continues to be very active, as can be seen by the publication of at least 150 articles related to this equation over the past decade. However, very few modern books have been published on Pell’s Equation, and this will be the first to give a historical development of the equation, as well as to develop the necessary tools for solving the equation. The authors provide a friendly introduction for advanced undergraduates to the delights of algebraic number theory via Pell’s Equation. The only prerequisites are a basic knowledge of elementary number theory and abstract algebra. There are also numerous references and notes for those who wish to follow up on various topics.

Book The Pell Equation

Download or read book The Pell Equation written by Edward Everett Whitford and published by . This book was released on 1912 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Diophantine Equations

Download or read book An Introduction to Diophantine Equations written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2010-09-02 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.

Book Pell   s Equation

    Book Details:
  • Author : Edward J. Barbeau
  • Publisher : Springer Science & Business Media
  • Release : 2006-05-04
  • ISBN : 0387226028
  • Pages : 220 pages

Download or read book Pell s Equation written by Edward J. Barbeau and published by Springer Science & Business Media. This book was released on 2006-05-04 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pell's equation is part of a central area of algebraic number theory that treats quadratic forms and the structure of the rings of integers in algebraic number fields. It is an ideal topic to lead college students, as well as some talented and motivated high school students, to a better appreciation of the power of mathematical technique. Even at the specific level of quadratic diophantine equations, there are unsolved problems, and the higher degree analogues of Pell's equation, particularly beyond the third, do not appear to have been well studied. In this focused exercise book, the topic is motivated and developed through sections of exercises which will allow the readers to recreate known theory and provide a focus for their algebraic practice. There are several explorations that encourage the reader to embark on their own research. A high school background in mathematics is all that is needed to get into this book, and teachers and others interested in mathematics who do not have (or have forgotten) a background in advanced mathematics may find that it is a suitable vehicle for keeping up an independent interest in the subject.

Book Quadratic Number Fields

Download or read book Quadratic Number Fields written by Franz Lemmermeyer and published by Springer Nature. This book was released on 2021-09-18 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.

Book Problem Solving Strategies

Download or read book Problem Solving Strategies written by Arthur Engel and published by Springer Science & Business Media. This book was released on 2008-01-19 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.

Book The IMO Compendium

    Book Details:
  • Author : Dušan Djukić
  • Publisher : Springer Science & Business Media
  • Release : 2011-05-05
  • ISBN : 1441998543
  • Pages : 819 pages

Download or read book The IMO Compendium written by Dušan Djukić and published by Springer Science & Business Media. This book was released on 2011-05-05 with total page 819 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The IMO Compendium" is the ultimate collection of challenging high-school-level mathematics problems and is an invaluable resource not only for high-school students preparing for mathematics competitions, but for anyone who loves and appreciates mathematics. The International Mathematical Olympiad (IMO), nearing its 50th anniversary, has become the most popular and prestigious competition for high-school students interested in mathematics. Only six students from each participating country are given the honor of participating in this competition every year. The IMO represents not only a great opportunity to tackle interesting and challenging mathematics problems, it also offers a way for high school students to measure up with students from the rest of the world. Until the first edition of this book appearing in 2006, it has been almost impossible to obtain a complete collection of the problems proposed at the IMO in book form. "The IMO Compendium" is the result of a collaboration between four former IMO participants from Yugoslavia, now Serbia and Montenegro, to rescue these problems from old and scattered manuscripts, and produce the ultimate source of IMO practice problems. This book attempts to gather all the problems and solutions appearing on the IMO through 2009. This second edition contains 143 new problems, picking up where the 1959-2004 edition has left off.

Book Introduction to Number Theory

Download or read book Introduction to Number Theory written by Trygve Nagell and published by American Mathematical Soc.. This book was released on 2021-07-21 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: A special feature of Nagell's well-known text is the rather extensive treatment of Diophantine equations of second and higher degree. A large number of non-routine problems are given. Reviews & Endorsements This is a very readable introduction to number theory, with particular emphasis on diophantine equations, and requires only a school knowledge of mathematics. The exposition is admirably clear. More advanced or recent work is cited as background, where relevant … [T]here are welcome novelties: Gauss's own evaluation of Gauss's sums, which is still perhaps the most elegant, is reproduced apparently for the first time. There are 180 examples, many of considerable interest, some of these being little known. -- Mathematical Reviews

Book Beginning Number Theory

    Book Details:
  • Author : Neville Robbins
  • Publisher : Jones & Bartlett Learning
  • Release : 2006
  • ISBN : 9780763737689
  • Pages : 368 pages

Download or read book Beginning Number Theory written by Neville Robbins and published by Jones & Bartlett Learning. This book was released on 2006 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly Revised And Updated, The New Second Edition Of Neville Robbins' Beginning Number Theory Includes All Of The Major Topics Covered In A Classic Number Theory Course And Blends In Numerous Applications And Specialized Treatments Of Number Theory, Including Cryptology, Fibonacci Numbers, And Computational Number Theory. The Text Strikes A Balance Between Traditional And Algorithmic Approaches To Elementary Number Theory And Is Supported With Numerous Exercises, Applications, And Case Studies Throughout. Computer Exercises For CAS Systems Are Also Included.

Book CRC Standard Mathematical Tables and Formulae  32nd Edition

Download or read book CRC Standard Mathematical Tables and Formulae 32nd Edition written by Daniel Zwillinger and published by CRC Press. This book was released on 2011-06-22 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: With over 6,000 entries, CRC Standard Mathematical Tables and Formulae, 32nd Edition continues to provide essential formulas, tables, figures, and descriptions, including many diagrams, group tables, and integrals not available online. This new edition incorporates important topics that are unfamiliar to some readers, such as visual proofs and sequences, and illustrates how mathematical information is interpreted. Material is presented in a multisectional format, with each section containing a valuable collection of fundamental tabular and expository reference material. New to the 32nd Edition A new chapter on Mathematical Formulae from the Sciences that contains the most important formulae from a variety of fields, including acoustics, astrophysics, epidemiology, finance, statistical mechanics, and thermodynamics New material on contingency tables, estimators, process capability, runs test, and sample sizes New material on cellular automata, knot theory, music, quaternions, and rational trigonometry Updated and more streamlined tables Retaining the successful format of previous editions, this comprehensive handbook remains an invaluable reference for professionals and students in mathematical and scientific fields.

Book Primes of the Form X2   Ny2

Download or read book Primes of the Form X2 Ny2 written by David A. Cox and published by Wiley-Interscience. This book was released on 1989-09-28 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern number theory began with the work of Euler and Gauss to understand and extend the many unsolved questions left behind by Fermat. In the course of their investigations, they uncovered new phenomena in need of explanation, which over time led to the discovery of field theory and its intimate connection with complex multiplication. While most texts concentrate on only the elementary or advanced aspects of this story, Primes of the Form x2 + ny2 begins with Fermat and explains how his work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. Further, the book shows how the results of Euler and Gauss can be fully understood only in the context of class field theory. Finally, in order to bring class field theory down to earth, the book explores some of the magnificent formulas of complex multiplication. The central theme of the book is the story of which primes p can be expressed in the form x2 + ny2. An incomplete answer is given using quadratic forms. A better though abstract answer comes from class field theory, and finally, a concrete answer is provided by complex multiplication. Along the way, the reader is introduced to some wonderful number theory. Numerous exercises and examples are included. The book is written to be enjoyed by readers with modest mathematical backgrounds. Chapter 1 uses basic number theory and abstract algebra, while chapters 2 and 3 require Galois theory and complex analysis, respectively.

Book A Primer of Analytic Number Theory

Download or read book A Primer of Analytic Number Theory written by Jeffrey Stopple and published by Cambridge University Press. This book was released on 2003-06-23 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: An undergraduate-level 2003 introduction whose only prerequisite is a standard calculus course.

Book Mathematics and Its History

Download or read book Mathematics and Its History written by John Stillwell and published by Springer Nature. This book was released on 2020-11-07 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition

Book Number Theory

    Book Details:
  • Author : Titu Andreescu
  • Publisher : Springer Science & Business Media
  • Release : 2009-06-12
  • ISBN : 0817646450
  • Pages : 383 pages

Download or read book Number Theory written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.

Book An Illustrated Theory of Numbers

Download or read book An Illustrated Theory of Numbers written by Martin H. Weissman and published by American Mathematical Soc.. This book was released on 2020-09-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.

Book Diophantus and Diophantine Equations

Download or read book Diophantus and Diophantine Equations written by Isabella Grigoryevna Bashmakova and published by American Mathematical Soc.. This book was released on 2019-01-29 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus--a person whose very existence has long been doubted by most historians of mathematics--will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the.

Book Square Matrices of Order 2

Download or read book Square Matrices of Order 2 written by Vasile Pop and published by Springer. This book was released on 2017-04-04 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique and innovative book presents an exciting and complete detail of all the important topics related to the theory of square matrices of order 2. The readers exploring every detailed aspect of matrix theory are gently led toward understanding advanced topics. They will follow every notion of matrix theory with ease, accumulating a thorough understanding of algebraic and geometric aspects of matrices of order 2. The prime jewel of this book is its offering of an unusual collection of problems, theoretically motivated, most of which are new, original, and seeing the light of publication for the first time in the literature. Nearly all of the exercises are presented with detailed solutions and vary in difficulty from easy to more advanced. Many problems are particularly challenging. These, and not only these, invite the reader to unleash their creativity and research capabilities and to discover their own methods of attacking a problem. Matrices have a vast practical importance to mathematics, science, and engineering; therefore the readership of this book is intended to be broad: high school students wishing to learn the fundamentals of matrix theory, first year students who like to participate in mathematical competitions, graduate students who want to learn more about an application of a certain technique, doctoral students who are preparing for their prelim exams in linear algebra, and linear algebra instructors. Chapters 1–3 complement a standard linear algebra course. Pure and applied mathematicians who use matrix theory for their applications will find this book useful as a refresher. In fact, anyone who is willing to explore the methodologies discussed in this book and work through a collection of problems involving matrices of order 2 will be enriched.