Download or read book Compressibility Turbulence and High Speed Flow written by Thomas B. Gatski and published by Academic Press. This book was released on 2013-03-05 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. - An introduction to current techniques in compressible turbulent flow analysis - An approach that enables engineers to identify and solve complex compressible flow challenges - Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) - Current strategies focusing on compressible flow control
Download or read book Turbulent Flows written by G. Biswas and published by CRC Press. This book was released on 2002 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.
Download or read book Analysis of Turbulent Flows with Computer Programs written by Tuncer Cebeci and published by Elsevier. This book was released on 2004 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling and Computation of Turbulent Flows has been written by one of the most prolific authors in the field of CFD. Professor of aerodynamics at SUPAERO and director of DMAE at ONERA, the author calls on both his academic and industrial experience when presenting this work. The field of CFD is strongly represented by the following corporate companies; Boeing; Airbus; Thales; United Technologies and General Electric, government bodies and academic institutions also have a strong interest in this exciting field. Each chapter has also been specifically constructed to constitute as an advanced textbook for PhD candidates working in the field of CFD, making this book essential reading for researchers, practitioners in industry and MSc and MEng students. * A broad overview of the development and application of Computational Fluid Dynamics (CFD), with real applications to industry * A Free CD-Rom which contains computer program's suitable for solving non-linear equations which arise in modeling turbulent flows * Professor Cebeci has published over 200 technical papers and 14 books, a world authority in the field of CFD
Download or read book Turbulence Models and Their Application written by Tuncer Cebeci and published by Springer Science & Business Media. This book was released on 2003-12-04 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Turbulent Shear Flows 8 written by Franz Durst and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.
Download or read book Stability and Transition in Shear Flows written by Peter J. Schmid and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Download or read book Turbulence Modeling for CFD CD ROM written by David C. Wilcox and published by . This book was released on 2006 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Mechanics of Turbulent Flows written by Stefan Heinz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .
Download or read book Turbulence in Fluids written by Marcel Lesieur and published by Springer Science & Business Media. This book was released on 2008-03-26 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its fully updated fourth edition, this leading text in its field is an exhaustive monograph on turbulence in fluids in its theoretical and applied aspects. The authors examine a number of advanced developments using mathematical spectral methods, direct-numerical simulations, and large-eddy simulations. The book remains a hugely important contribution to the literature on a topic of great importance for engineering and environmental applications, and presents a very detailed presentation of the field.
Download or read book Turbulent Fluid Flow written by Peter S. Bernard and published by John Wiley & Sons. This book was released on 2019-03-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the essential information needed to model and compute turbulent flows and interpret experiments and numerical simulations Turbulent Fluid Flow offers an authoritative resource to the theories and models encountered in the field of turbulent flow. In this book, the author – a noted expert on the subject – creates a complete picture of the essential information needed for engineers and scientists to carry out turbulent flow studies. This important guide puts the focus on the essential aspects of the subject – including modeling, simulation and the interpretation of experimental data - that fit into the basic needs of engineers that work with turbulent flows in technological design and innovation. Turbulent Fluid Flow offers the basic information that underpins the most recent models and techniques that are currently used to solve turbulent flow challenges. The book provides careful explanations, many supporting figures and detailed mathematical calculations that enable the reader to derive a clear understanding of turbulent fluid flow. This vital resource: Offers a clear explanation to the models and techniques currently used to solve turbulent flow problems Provides an up-to-date account of recent experimental and numerical studies probing the physics of canonical turbulent flows Gives a self-contained treatment of the essential topics in the field of turbulence Puts the focus on the connection between the subject matter and the goals of fluids engineering Comes with a detailed syllabus and a solutions manual containing MATLAB codes, available on a password-protected companion website Written for fluids engineers, physicists, applied mathematicians and graduate students in mechanical, aerospace and civil engineering, Turbulent Fluid Flow contains an authoritative resource to the information needed to interpret experiments and carry out turbulent flow studies.
Download or read book Statistical Theory and Modeling for Turbulent Flows written by P. A. Durbin and published by Wiley-Blackwell. This book was released on 2001-03-12 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.
Download or read book Modeling Complex Turbulent Flows written by Manuel D. Salas and published by Springer Science & Business Media. This book was released on 1999-04-30 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.
Download or read book Direct and Large Eddy Simulation I written by Peter R. Voke and published by Springer Science & Business Media. This book was released on 1994-10-31 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.
Download or read book Transition Turbulence and Combustion Modelling written by A. Hanifi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This single-volume work gives an introduction to the fields of transition, turbulence, and combustion modeling of compressible flows and provides the physical background for today’s modeling approaches in these fields. It presents basic equations and discusses fundamental aspects of hydrodynamical instability.
Download or read book Computational Fluid Dynamics written by Jiri Blazek and published by Butterworth-Heinemann. This book was released on 2015-04-23 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization. An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques. - Will provide you with the knowledge required to develop and understand modern flow simulation codes - Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics - Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques
Download or read book Large Eddy Simulation for Compressible Flows written by Eric Garnier and published by Springer Science & Business Media. This book was released on 2009-08-11 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.