Download or read book Modeling and Simulation Volume 12 part 2 written by William G. Vogt and published by . This book was released on 1981 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Adaptive and Natural Computing Algorithms written by Bartlomiej Beliczynski and published by Springer. This book was released on 2007-07-03 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volume set LNCS 4431 and LNCS 4432 constitutes the refereed proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2007, held in Warsaw, Poland, in April 2007. The 178 revised full papers presented were carefully reviewed and selected from a total of 474 submissions.
Download or read book Recent Econometric Techniques for Macroeconomic and Financial Data written by Gilles Dufrénot and published by Springer Nature. This book was released on 2020-11-21 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive overview of the latest econometric methods for studying the dynamics of macroeconomic and financial time series. It examines alternative methodological approaches and concepts, including quantile spectra and co-spectra, and explores topics such as non-linear and non-stationary behavior, stochastic volatility models, and the econometrics of commodity markets and globalization. Furthermore, it demonstrates the application of recent techniques in various fields: in the frequency domain, in the analysis of persistent dynamics, in the estimation of state space models and new classes of volatility models. The book is divided into two parts: The first part applies econometrics to the field of macroeconomics, discussing trend/cycle decomposition, growth analysis, monetary policy and international trade. The second part applies econometrics to a wide range of topics in financial economics, including price dynamics in equity, commodity and foreign exchange markets and portfolio analysis. The book is essential reading for scholars, students, and practitioners in government and financial institutions interested in applying recent econometric time series methods to financial and economic data.
Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Download or read book AI and Financial Markets written by Shigeyuki Hamori and published by MDPI. This book was released on 2020-07-01 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) is regarded as the science and technology for producing an intelligent machine, particularly, an intelligent computer program. Machine learning is an approach to realizing AI comprising a collection of statistical algorithms, of which deep learning is one such example. Due to the rapid development of computer technology, AI has been actively explored for a variety of academic and practical purposes in the context of financial markets. This book focuses on the broad topic of “AI and Financial Markets”, and includes novel research associated with this topic. The book includes contributions on the application of machine learning, agent-based artificial market simulation, and other related skills to the analysis of various aspects of financial markets.
Download or read book Deep Learning Applications with Practical Measured Results in Electronics Industries written by Mong-Fong Horng and published by MDPI. This book was released on 2020-05-22 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects 14 articles from the Special Issue entitled “Deep Learning Applications with Practical Measured Results in Electronics Industries” of Electronics. Topics covered in this Issue include four main parts: (1) environmental information analyses and predictions, (2) unmanned aerial vehicle (UAV) and object tracking applications, (3) measurement and denoising techniques, and (4) recommendation systems and education systems. These authors used and improved deep learning techniques (e.g., ResNet (deep residual network), Faster-RCNN (faster regions with convolutional neural network), LSTM (long short term memory), ConvLSTM (convolutional LSTM), GAN (generative adversarial network), etc.) to analyze and denoise measured data in a variety of applications and services (e.g., wind speed prediction, air quality prediction, underground mine applications, neural audio caption, etc.). Several practical experiments were conducted, and the results indicate that the performance of the presented deep learning methods is improved compared with the performance of conventional machine learning methods.
Download or read book Imperfect Knowledge Economics written by Roman Frydman and published by Princeton University Press. This book was released on 2023-09-26 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Posing a major challenge to economic orthodoxy, Imperfect Knowledge Economics asserts that exact models of purposeful human behavior are beyond the reach of economic analysis. Roman Frydman and Michael Goldberg argue that the longstanding empirical failures of conventional economic models stem from their futile efforts to make exact predictions about the consequences of rational, self-interested behavior. Such predictions, based on mechanistic models of human behavior, disregard the importance of individual creativity and unforeseeable sociopolitical change. Scientific though these explanations may appear, they usually fail to predict how markets behave. And, the authors contend, recent behavioral models of the market are no less mechanistic than their conventional counterparts: they aim to generate exact predictions of "irrational" human behavior. Frydman and Goldberg offer a long-overdue response to the shortcomings of conventional economic models. Drawing attention to the inherent limits of economists' knowledge, they introduce a new approach to economic analysis: Imperfect Knowledge Economics (IKE). IKE rejects exact quantitative predictions of individual decisions and market outcomes in favor of mathematical models that generate only qualitative predictions of economic change. Using the foreign exchange market as a testing ground for IKE, this book sheds new light on exchange-rate and risk-premium movements, which have confounded conventional models for decades. Offering a fresh way to think about markets and representing a potential turning point in economics, Imperfect Knowledge Economics will be essential reading for economists, policymakers, and professional investors.
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Download or read book Learning in an Estimated Medium scale DSGE Model written by Sergey Slobodyan and published by . This book was released on 2009 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Machine Learning in Asset Pricing written by Stefan Nagel and published by Princeton University Press. This book was released on 2021-05-11 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.
Download or read book Patterns Predictions and Actions Foundations of Machine Learning written by Moritz Hardt and published by Princeton University Press. This book was released on 2022-08-23 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers
Download or read book Generative Social Science written by Joshua M. Epstein and published by Princeton University Press. This book was released on 2012-01-02 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agent-based computational modeling is changing the face of social science. In Generative Social Science, Joshua Epstein argues that this powerful, novel technique permits the social sciences to meet a fundamentally new standard of explanation, in which one "grows" the phenomenon of interest in an artificial society of interacting agents: heterogeneous, boundedly rational actors, represented as mathematical or software objects. After elaborating this notion of generative explanation in a pair of overarching foundational chapters, Epstein illustrates it with examples chosen from such far-flung fields as archaeology, civil conflict, the evolution of norms, epidemiology, retirement economics, spatial games, and organizational adaptation. In elegant chapter preludes, he explains how these widely diverse modeling studies support his sweeping case for generative explanation. This book represents a powerful consolidation of Epstein's interdisciplinary research activities in the decade since the publication of his and Robert Axtell's landmark volume, Growing Artificial Societies. Beautifully illustrated, Generative Social Science includes a CD that contains animated movies of core model runs, and programs allowing users to easily change assumptions and explore models, making it an invaluable text for courses in modeling at all levels.
Download or read book Macroeconomic Forecasting in the Era of Big Data written by Peter Fuleky and published by Springer Nature. This book was released on 2019-11-28 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Download or read book Elements of Applied Bifurcation Theory written by Yuri Kuznetsov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Download or read book State space Models with Regime Switching written by Chang-Jin Kim and published by Mit Press. This book was released on 1999 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both state-space models and Markov switching models have been highly productive paths for empirical research in macroeconomics and finance. This book presents recent advances in econometric methods that make feasible the estimation of models that have both features. One approach, in the classical framework, approximates the likelihood function; the other, in the Bayesian framework, uses Gibbs-sampling to simulate posterior distributions from data.The authors present numerous applications of these approaches in detail: decomposition of time series into trend and cycle, a new index of coincident economic indicators, approaches to modeling monetary policy uncertainty, Friedman's "plucking" model of recessions, the detection of turning points in the business cycle and the question of whether booms and recessions are duration-dependent, state-space models with heteroskedastic disturbances, fads and crashes in financial markets, long-run real exchange rates, and mean reversion in asset returns.
Download or read book International Handbook on the Economics of Energy written by Lester C. Hunt and published by Edward Elgar Publishing. This book was released on 2011-01-01 with total page 849 pages. Available in PDF, EPUB and Kindle. Book excerpt: As an essential component for economic growth, energy has a significant impact on the global economy. The need to meet growing energy demand has prompted cutting-edge innovation in clean technology in an attempt to realise environmental and cost objectives, whilst ensuring the security of energy supply. This Handbook offers a comprehensive review of the economics of energy, including contributions from a distinguished array of international specialists. It provides a thorough discussion of the major research issues in this topical field of economics. Themes addressed include the theory of energy supply, demand and policy, empirical modelling of energy demand, holistic energy models, an analysis of coal, gas, electricity, oil and the markets within which they operate, and a discussion of the current key energy policy issues. The topics of pricing, transmission, regulation, security, energy efficiency, new technologies and climate change are also discussed. The International Handbook on the Economics of Energy presents a comprehensive overview of the state-of-the-art research making it an indispensable reference for researchers, advanced students, practitioners and policy-makers alike.
Download or read book Bayesian Estimation of DSGE Models written by Edward P. Herbst and published by Princeton University Press. This book was released on 2015-12-29 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.