EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book On the Influence of Large Scale Forcing and Flow Topology on the Dynamics of Small scale Turbulent Transport

Download or read book On the Influence of Large Scale Forcing and Flow Topology on the Dynamics of Small scale Turbulent Transport written by Bertrand Rollin and published by . This book was released on 2008 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: The small-scale dynamics is analyzed with regards to the local topology of the flow, which is determined by the second and third invariant of the velocity gradient tensor. The phase-plane defined by these invariants allows an identification of the streamline patterns in the neighborhood of the location where they are computed. Probability density functions and conditioned statistics based on the local flow structure show that large scalar dissipation occurs in biaxial extensional regions located near vortices. Large scalar dissipation fluctuations pose a great challenge for traditional numerical simulations. Their scales, which could be several orders of magnitude smaller than the smallest velocity scales, may cause numerical errors that can significantly affect the accuracy of the solution. The study presented in this dissertation establishes the foundation for a new modeling strategy based on the flow topology and the combination of Eulerian and Lagrangian transport method.

Book Data driven and Nonlocal Approaches in Modeling  Analysis and Simulation of Turbulent Mixing Phenomena

Download or read book Data driven and Nonlocal Approaches in Modeling Analysis and Simulation of Turbulent Mixing Phenomena written by Ali Akhavan Safaei and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overreaching goal of this study is utilizing data-driven methods and sophisticated mathematical tools for modeling and simulation of turbulent transport of passive scalars. We focus on embedding the intrinsic nonlocal nature of the turbulence into our models. We study the nonlocal dynamics in the context of (i) subgrid-scale (SGS) modeling for largeeddy simulation (LES), and (ii) the turbulent cascade under large-scale anisotropic sources. Moreover, we implement stochastic modeling methodologies to systematically investigate the contributing mechanisms leading a high-speed hydrodynamic transport system into instability and chaos, as well as discovering the anomalies in the featured characteristics of the transport.First, we present a computational-statistical framework to obtain high-fidelity data for homogeneous isotropic turbulent (HIT) flow and passive scalar transport. A parallel implementation of the well-known pseudo-spectral method in addition to the comprehensive record of the statistical and small-scale quantities of the turbulent transport are offered for executing on distributed memory CPU-based supercomputers.Afterwards, we investigate the inherent nonlocal behavior of the SGS passive scalar flux through studying its two-point statistics obtained from the filtered direct numerical simulation (DNS) data for passive scalar transport in HIT flow. We propose a statistical model for microscopic SGS motions by considering the filtered Boltzmann transport equation (FBTE) for passive scalar. In FBTE, we approximate the filtered equilibrium distribution with an Îł-stable Levy distribution that incorporates a power-law behavior to resemble the observed nonlocal statistics of SGS scalar flux. Through generic ensemble-averaging of FBTE, we formulate a continuum-level closure model for the SGS scalar flux appearing in terms of a fractional-order Laplacian that is a nonlocal operator.Moreover, we revisit the spectral transfer model for the turbulent intensity in the passive scalar transport (under large-scale anisotropic forcing), and a subsequent modification to the scaling of scalar variance cascade is presented. Accordingly, we obtain a revised scalar transport model using fractional-order Laplacian operator that facilitates the robust inclusion of the nonlocal effects originated from large-scale anisotropy transferred across the multitude of scales in the turbulent cascade. We provide an a priori estimate for the nonlocal model, and examine the model through a new DNS. We conduct a detailed analysis on the evolution of the scalar variance, high-order statistics of scalar gradient, and two-point statistical metrics of the turbulent transport to compare the developed nonlocal model and its standard version.In another study, a deep learning surrogate model in the form of fully connected feedforward neural networks is developed to predict the SGS scalar flux in the context of large eddy simulation of turbulent transport. The deep neural network (DNN) model is trained and validated using filtered DNS dataset at P eλ = 240, Sc = 1 that includes the filtered scalar and velocity gradients as input features. Using the transfer learning concept, we generalize the performance of this trained model to turbulent scalar transport regimes with higher P eλ and Sc numbers with a relatively low amount of data and computations.Finally, in stochastic modeling of hydrodynamic transport, we study the flow dynamics inside a high-speed rotating cylinder after introducing strong symmetry-breaking disturbance factors at cylinder wall motion. We perform a statistical analysis on the fluctuating fields characterizing the fingerprints and measures of intense and rapidly evolving non-Gaussian behavior through space and time. Such non-Gaussian statistics essentially emerge and evolve due to an intensified presence of coherent vortical motions initially triggered by the flow instability due to symmetry-breaking rotation of the cylinder. We show that this mechanism causes significant memory effects in the flow so that noticeable anomaly in the time-scaling of enstrophy record is observed in the long run apart from the onset of instability.

Book The Origin and Dynamics of Solar Magnetism

Download or read book The Origin and Dynamics of Solar Magnetism written by M.J. Thompson and published by Springer Science & Business Media. This book was released on 2009-05-01 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting in 1995 numerical modeling of the Earth’s dynamo has ourished with remarkable success. Direct numerical simulation of convection-driven MHD- ow in a rotating spherical shell show magnetic elds that resemble the geomagnetic eld in many respects: they are dominated by the axial dipole of approximately the right strength, they show spatial power spectra similar to that of Earth, and the magnetic eld morphology and the temporal var- tion of the eld resembles that of the geomagnetic eld (Christensen and Wicht 2007). Some models show stochastic dipole reversals whose details agree with what has been inferred from paleomagnetic data (Glatzmaier and Roberts 1995; Kutzner and Christensen 2002; Wicht 2005). While these models represent direct numerical simulations of the fundamental MHD equations without parameterized induction effects, they do not match actual pla- tary conditions in a number of respects. Speci cally, they rotate too slowly, are much less turbulent, and use a viscosity and thermal diffusivity that is far too large in comparison to magnetic diffusivity. Because of these discrepancies, the success of geodynamo models may seem surprising. In order to better understand the extent to which the models are applicable to planetary dynamos, scaling laws that relate basic properties of the dynamo to the fundamental control parameters play an important role. In recent years rst attempts have been made to derive such scaling laws from a set of numerical simulations that span the accessible parameter space (Christensen and Tilgner 2004; Christensen and Aubert 2006).

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Research Directions in Computational Mechanics

Download or read book Research Directions in Computational Mechanics written by National Research Council and published by National Academies Press. This book was released on 1991-02-01 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Book Transport and Coherent Structures in Wall Turbulence

Download or read book Transport and Coherent Structures in Wall Turbulence written by Sedat Tardu and published by John Wiley & Sons. This book was released on 2014-09-10 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wall bounded turbulent flows are of major importance in industrial and environmental fluid mechanics. The structure of the wall turbulence is intrinsically related to the coherent structures that play a fundamental role in the transport process. The comprehension of their regeneration mechanism is indispensable for the development of efficient strategies in terms of drag control and near wall turbulence management. This book provides an up-to-date overview on the progress made in this specific area in recent years.

Book An Informal Conceptual Introduction to Turbulence

Download or read book An Informal Conceptual Introduction to Turbulence written by Arkady Tsinober and published by Springer Science & Business Media. This book was released on 2009-08-29 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fully revised second edition focuses on physical phenomena and observations in turbulence, and is focused on reversing misconceptions and ill-defined concepts. New topics include ergodicity, Eulerian versus Lagrangian descriptions, theory validation, and anomalous scaling.

Book Numerical Modeling of Collision and Agglomeration of Adhesive Particles in Turbulent Flows

Download or read book Numerical Modeling of Collision and Agglomeration of Adhesive Particles in Turbulent Flows written by Farzad Farajidizaji and published by . This book was released on 2018 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle motion, clustering and agglomeration play an important role in natural phenomena and industrial processes. In classical computational fluid dynamics (CFD), there are three major methods which can be used to predict the flow field and consequently the behavior of particles in flow-fields: 1) direct numerical simulation (DNS) which is very expensive and time consuming, 2) large eddy simulation (LES) which resolves the large scale but not the small scale fluctuations, and 3) Reynolds-Averaged Navier-Stokes (RANS) which can only predict the mean flow. In order to make LES and RANS usable for studying the behavior of small suspended particles, we need to introduce small scale fluctuations to these models, since these small scales have a huge impact on the particle behavior. The first part of this dissertation both extends and critically examines a new method for the generation of small scale fluctuations for use with RANS simulations. This method, called the stochastic vortex structure (SVS) method, uses a series of randomly positioned and oriented vortex tubes to induce the small-scale fluctuating flow. We first use SVS in isotropic homogenous turbulence and validate the predicted flow characteristics and collision and agglomeration of particles from the SVS model with full DNS computations. The calculation speed for the induced velocity from the vortex structures is improved by about two orders of magnitude using a combination of the fast multiple method and a local Taylor series expansion. Next we turn to the problem of extension of the SVS method to more general turbulent flows. We propose an inverse method by which the initial vortex orientation can be specified to generate a specific anisotropic Reynolds stress field. The proposed method is validated for turbulence measures and colliding particle transport in comparison to DNS for turbulent jet flow. The second part of the dissertation uses DNS to examine in more detail two issues raised during developing the SVS model. The first issue concerns the effect of two-way coupling on the agglomeration of adhesive particles. The SVS model as developed to date does not account for the effect of particles on the flow-field (one-way coupling). We focused on examination of the local flow around agglomerates and the effect of agglomeration on modulation of the turbulence. The second issue examines the microphysics of turbulent agglomeration by examining breakup and collision of agglomerates in a shear flow. DNS results are reported both for one agglomerate in shear and for collision of two agglomerates, with a focus on the physics and role of the particle-induced flow field on the particle dynamics.

Book Hydrodynamic and Magnetohydrodynamic Turbulent Flows

Download or read book Hydrodynamic and Magnetohydrodynamic Turbulent Flows written by A. Yoshizawa and published by Springer. This book was released on 1998-09-30 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the first comprehensive overview of turbulence modelling from both the conventional and statistical-theoretical viewpoints. The mathematical structures of primary turbulence models such as algebraic (turbulent-viscosity-type), second-order, and subgrid-scales ones are elucidated, and the relationship between them is shown systematically. This approach is extended to turbulent or mean-field dynamo that plays an important role in the study of the generation and sustainment mechanisms of magnetic fields in astro-geophysical and fusion phenomena. Finally, turbulence modelling is shown to be a concept possessing a wide range of applicability in both the practical and academic senses. Readers are expected to have a basic knowledge of fluid mechanics at a graduate level and beyond. The important properties of turbulence necessary for turbulence modelling, however, are explained in a self-consistent manner. This book is therefore suited for both graduate students and researchers who are interested in turbulence modelling and turbulent dynamo.

Book A Multiple Scale Model for Compressible Turbulent Flows

Download or read book A Multiple Scale Model for Compressible Turbulent Flows written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-28 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multiple-scale model for compressible turbulent flows is proposed. It is assumed that turbulent eddy shocklets are formed primarily by the 'collisions' of large energetic eddies. The extra straining of the large eddy, due to their interactions with shocklets, enhances the energy cascade to smaller eddies. Model transport equations are developed for the turbulent kinetic energies and the energy transfer rates of the different scale. The turbulent eddy viscosity is determined by the total turbulent kinetic energy and the rate of energy transfer from the large scale to the small scale, which is different from the energy dissipation rate. The model coefficients in the modeled turbulent transport equations depend on the ratio of the turbulent kinetic energy of the large scale to that of the small scale, which renders the model more adaptive to the characteristics of individual flow. The model is tested against compressible free shear layers. The results agree satisfactorily with measurements. Liou, William W. and Shih, Tsan-Hsing Glenn Research Center NCC3-233; RTOP 505-90-5K...

Book Turbulent Flows

Download or read book Turbulent Flows written by Jean Piquet and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.

Book Advanced Approaches in Turbulence

Download or read book Advanced Approaches in Turbulence written by Paul Durbin and published by Elsevier. This book was released on 2021-07-24 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis

Book Modeling Complex Turbulent Flows

Download or read book Modeling Complex Turbulent Flows written by Manuel D. Salas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.

Book Turbulence Structure Associated with Intercomponent and Interscale Energy Transfer and Modification by Forcing

Download or read book Turbulence Structure Associated with Intercomponent and Interscale Energy Transfer and Modification by Forcing written by and published by . This book was released on 1993 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two parts to this research program. First program focusses on the quantification of loosely held concepts such as 'structure, ' and 'dynamic significance' of structure in the study of turbulent flows in general, and shear flows in particular. We have developed a robust algorithm which 'extracts' regions of concentrated activity in a fluctuating turbulence variable and labels each region individually for quantitative and graphical analysis, and applied the technique to the combined visual and quantitative analysis of vorticity, strain-rate, Reynolds stress and turbulent kinetic energy in the transition for isotropic to shear-dominated homogeneous turbulence. The focus of the second program is on interscale interactions in high Reynolds number turbulence, with a particular focus on the direct interaction between large and small scales in the dynamic evolution of equilibrium and nonequilibrium turbulent flows. Analytical analysis has demonstrated the persistence of these interactions in the high Reynolds number limit and basic analysis of the limiting triadic form of the Navier-Stokes equation has appeared in several publication Based on predictions made from the asymptotic triadic equations, we have analysed the dynamics of direct large-small scale couplings through direct numerical simulations of initially isotropic turbulence forced anisotropically the large scales and found that large scale restructuring can dramatically alter small scale structure and dynamics. Turbulence, Shear flows, Scientific visualization.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1999 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Statistical Theories and Computational Approaches to Turbulence

Download or read book Statistical Theories and Computational Approaches to Turbulence written by Y. Kaneda and published by Springer. This book was released on 2002-10-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers presented at the workshop on Statistical The ories and Computational Approaches to Turbulence: Modern Perspectives and Applications to Global-Scale Flows, held October 10-13, 2001, at Nagoya Uni versity, Nagoya, Japan. Because of recent developments in computational capabilities, the compu tational approach is showing the potential to resolve a much wider range of length and time scales in turbulent physical systems. Nevertheless, even with the largest supercomputers of the foreseeable future, development of adequate modeling techniques for at least some scales of motion will be necessary for practical computations of important problems such as weather forecasting and the prediction and control of global pollution. The more powerful the available machines become, the more demand there will be for precise prediction of the systems. This means that more precise and reliable knowledge of the underlying dynamics will become important, and that more efficient and precise numerical methods best adapted to the new generation of computers will be necessary. The understanding of the nature of unresolved scales then will playa key role in the modeling of turbulent motion. The challenge to turbulence theory here is to elucidate the physics or dynamics of those scales, in particular their sta tistical aspects, and thereby develop models on sound bases to reduce modeling ambiguity. The challenge to the computational method is to develop efficient algorithms suitable for the problems, the machines, and the developed models.