EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Equivariant Stable Homotopy Theory

Download or read book Equivariant Stable Homotopy Theory written by L. Gaunce Jr. Lewis and published by Springer. This book was released on 2006-11-14 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a foundational piece of work in stable homotopy theory and in the theory of transformation groups. It may be roughly divided into two parts. The first part deals with foundations of (equivariant) stable homotopy theory. A workable category of CW-spectra is developed. The foundations are such that an action of a compact Lie group is considered throughout, and spectra allow desuspension by arbitrary representations. But even if the reader forgets about group actions, he will find many details of the theory worked out for the first time. More subtle constructions like smash products, function spectra, change of group isomorphisms, fixed point and orbit spectra are treated. While it is impossible to survey properly the material which is covered in the book, it does boast these general features: (i) a thorough and reliable presentation of the foundations of the theory; (ii) a large number of basic results, principal applications, and fundamental techniques presented for the first time in a coherent theory, unifying numerous treatments of special cases in the literature.

Book Generalized Cohomology

Download or read book Generalized Cohomology written by Akira Kōno and published by American Mathematical Soc.. This book was released on 2006 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aims to give an exposition of generalized (co)homology theories that can be read by a group of mathematicians who are not experts in algebraic topology. This title starts with basic notions of homotopy theory, and introduces the axioms of generalized (co)homology theory. It also discusses various types of generalized cohomology theories.

Book Algebraic Topology

    Book Details:
  • Author : Nils Baas
  • Publisher : Springer Science & Business Media
  • Release : 2009-08-05
  • ISBN : 3642012000
  • Pages : 417 pages

Download or read book Algebraic Topology written by Nils Baas and published by Springer Science & Business Media. This book was released on 2009-08-05 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of this symposium was the development of new perspectives and new constructions with a categorical flavor. As the lectures at the symposium and the papers of this volume demonstrate, these perspectives and constructions have enabled a broadening of vistas, a synergy between once-differentiated subjects, and solutions to mathematical problems both old and new.

Book A Concise Course in Algebraic Topology

Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Book Equivariant Homotopy and Cohomology Theory

Download or read book Equivariant Homotopy and Cohomology Theory written by J. Peter May and published by American Mathematical Soc.. This book was released on 1996 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.

Book Algebraic and Geometric Surgery

Download or read book Algebraic and Geometric Surgery written by Andrew Ranicki and published by Oxford University Press. This book was released on 2002 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.

Book Cohomology Operations and Applications in Homotopy Theory

Download or read book Cohomology Operations and Applications in Homotopy Theory written by Robert E. Mosher and published by Courier Corporation. This book was released on 2008-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.

Book Lecture Notes in Algebraic Topology

Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and published by American Mathematical Society. This book was released on 2023-05-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Book Algebraic L theory and Topological Manifolds

Download or read book Algebraic L theory and Topological Manifolds written by Andrew Ranicki and published by Cambridge University Press. This book was released on 1992-12-10 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

Book Global Homotopy Theory

    Book Details:
  • Author : Stefan Schwede
  • Publisher : Cambridge University Press
  • Release : 2018-09-06
  • ISBN : 110842581X
  • Pages : 847 pages

Download or read book Global Homotopy Theory written by Stefan Schwede and published by Cambridge University Press. This book was released on 2018-09-06 with total page 847 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.

Book Algebraic Topology

    Book Details:
  • Author : Mark E. Mahowald
  • Publisher : American Mathematical Soc.
  • Release : 1989
  • ISBN : 0821851020
  • Pages : 366 pages

Download or read book Algebraic Topology written by Mark E. Mahowald and published by American Mathematical Soc.. This book was released on 1989 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will provide readers with an overview of some of the major developments in current research in algebraic topology. Representing some of the leading researchers in the field, the book contains the proceedings of the International Conference on Algebraic Topology, held at Northwestern University in March, 1988. Several of the lectures at the conference were expository and will therefore appeal to topologists in a broad range of areas. The primary emphasis of the book is on homotopy theory and its applications. The topics covered include elliptic cohomology, stable and unstable homotopy theory, classifying spaces, and equivariant homotopy and cohomology. Geometric topics--such as knot theory, divisors and configurations on surfaces, foliations, and Siegel spaces--are also discussed. Researchers wishing to follow current trends in algebraic topology will find this book a valuable resource.

Book Homotopical Algebra

    Book Details:
  • Author : Daniel G. Quillen
  • Publisher : Springer
  • Release : 2006-11-14
  • ISBN : 3540355235
  • Pages : 165 pages

Download or read book Homotopical Algebra written by Daniel G. Quillen and published by Springer. This book was released on 2006-11-14 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Formal Geometry and Bordism Operations

Download or read book Formal Geometry and Bordism Operations written by Eric Peterson and published by Cambridge University Press. This book was released on 2019 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delivers a broad, conceptual introduction to chromatic homotopy theory, focusing on contact with arithmetic and algebraic geometry.

Book Transformation Groups

    Book Details:
  • Author : Tammo tom Dieck
  • Publisher : Walter de Gruyter
  • Release : 2011-04-20
  • ISBN : 3110858371
  • Pages : 325 pages

Download or read book Transformation Groups written by Tammo tom Dieck and published by Walter de Gruyter. This book was released on 2011-04-20 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: “This book is a jewel – it explains important, useful and deep topics in Algebraic Topology that you won’t find elsewhere, carefully and in detail.” Prof. Günter M. Ziegler, TU Berlin

Book Equivariant Cohomology Theories

Download or read book Equivariant Cohomology Theories written by Glen E. Bredon and published by Springer. This book was released on 2006-11-14 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: a

Book Moment Maps  Cobordisms  and Hamiltonian Group Actions

Download or read book Moment Maps Cobordisms and Hamiltonian Group Actions written by Victor Guillemin and published by American Mathematical Soc.. This book was released on 2002 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last 20 years, ``localization'' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the ``quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an ``abstract moment map''. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.

Book Nilpotence and Periodicity in Stable Homotopy Theory

Download or read book Nilpotence and Periodicity in Stable Homotopy Theory written by Douglas C. Ravenel and published by Princeton University Press. This book was released on 1992-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.