Download or read book On the Class Number of Abelian Number Fields written by Helmut Hasse and published by Springer. This book was released on 2019-04-23 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this translation, the classic monograph Über die Klassenzahl abelscher Zahlkörper by Helmut Hasse is now available in English for the first time. The book addresses three main topics: class number formulas for abelian number fields; expressions of the class number of real abelian number fields by the index of the subgroup generated by cyclotomic units; and the Hasse unit index of imaginary abelian number fields, the integrality of the relative class number formula, and the class number parity. Additionally, the book includes reprints of works by Ken-ichi Yoshino and Mikihito Hirabayashi, which extend the tables of Hasse unit indices and the relative class numbers to imaginary abelian number fields with conductor up to 100. The text provides systematic and practical methods for deriving class number formulas, determining the unit index and calculating the class number of abelian number fields. A wealth of illustrative examples, together with corrections and remarks on the original work, make this translation a valuable resource for today’s students of and researchers in number theory.
Download or read book Quadratic Number Fields written by Franz Lemmermeyer and published by Springer Nature. This book was released on 2021-09-18 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.
Download or read book Introduction To Non abelian Class Field Theory An Automorphic Forms Of Weight 1 And 2 dimensional Galois Representations written by Toyokazu Hiramatsu and published by World Scientific. This book was released on 2016-09-13 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a brief exposition of automorphic forms of weight 1 and their applications to arithmetic, especially to Galois representations. One of the outstanding problems in arithmetic is a generalization of class field theory to non-abelian Galois extension of number fields. In this volume, we discuss some relations between this problem and cusp forms of weight 1.
Download or read book Class Field Theory written by Nancy Childress and published by Springer Science & Business Media. This book was released on 2008-10-28 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Class field theory brings together the quadratic and higher reciprocity laws of Gauss, Legendre, and others, and vastly generalizes them. This book provides an accessible introduction to class field theory. It takes a traditional approach in that it attempts to present the material using the original techniques of proof, but in a fashion which is cleaner and more streamlined than most other books on this topic. It could be used for a graduate course on algebraic number theory, as well as for students who are interested in self-study. The book has been class-tested, and the author has included lots of challenging exercises throughout the text.
Download or read book Introduction to Cyclotomic Fields written by Lawrence C. Washington and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.
Download or read book Number Fields written by Frans Keune and published by Radboud University Press. This book was released on 2023-03-27 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number Fields is a textbook for algebraic number theory. It grew out of lecture notes of master courses taught by the author at Radboud University, the Netherlands, over a period of more than four decades. It is self-contained in the sense that it uses only mathematics of a bachelor level, including some Galois theory. Part I of the book contains topics in basic algebraic number theory as they may be presented in a beginning master course on algebraic number theory. It includes the classification of abelian number fields by groups of Dirichlet characters. Class field theory is treated in Part II: the more advanced theory of abelian extensions of number fields in general. Full proofs of its main theorems are given using a ‘classical’ approach to class field theory, which is in a sense a natural continuation of the basic theory as presented in Part I. The classification is formulated in terms of generalized Dirichlet characters. This ‘ideal-theoretic’ version of class field theory dates from the first half of the twentieth century. In this book, it is described in modern mathematical language. Another approach, the ‘idèlic version’, uses topological algebra and group cohomology and originated halfway the last century. The last two chapters provide the connection to this more advanced idèlic version of class field theory. The book focuses on the abstract theory and contains many examples and exercises. For quadratic number fields algorithms are given for their class groups and, in the real case, for the fundamental unit. New concepts are introduced at the moment it makes a real difference to have them available.
Download or read book Number Fields written by Daniel A. Marcus and published by Springer. This book was released on 2018-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
Download or read book Introduction to Cyclotomic Fields written by Lawrence C. Washington and published by Springer Science & Business Media. This book was released on 1997 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.
Download or read book Cohomology of Number Fields written by Jürgen Neukirch and published by Springer Science & Business Media. This book was released on 2013-09-26 with total page 831 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
Download or read book The Genus Fields of Algebraic Number Fields written by M. Ishida and published by Springer. This book was released on 2006-12-08 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: a
Download or read book Algebraic Number Theory written by H. Koch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "... The author succeeded in an excellent way to describe the various points of view under which Class Field Theory can be seen. ... In any case the author succeeded to write a very readable book on these difficult themes." Monatshefte fuer Mathematik, 1994 "... Number theory is not easy and quite technical at several places, as the author is able to show in his technically good exposition. The amount of difficult material well exposed gives a survey of quite a lot of good solid classical number theory... Conclusion: for people not already familiar with this field this book is not so easy to read, but for the specialist in number theory this is a useful description of (classical) algebraic number theory." Medelingen van het wiskundig genootschap, 1995
Download or read book Number Theory in Function Fields written by Michael Rosen and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Download or read book Arithmetic Geometry written by G. Cornell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to publish this volume. We would especially like to thank David Rohrlich, who delivered the lectures on height functions (Chapter VI) when the second editor was unavoidably detained. In addition to the editors, Michael Artin and John Tate served on the organizing committee for the conference and much of the success of the conference was due to them-our thanks go to them for their assistance. Finally, the conference was only made possible through generous grants from the Vaughn Foundation and the National Science Foundation.
Download or read book Iwasawa Theory 2012 written by Thanasis Bouganis and published by Springer. This book was released on 2014-12-08 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory. Iwasawa theory is a modern and powerful branch of number theory and can be traced back to the Japanese mathematician Kenkichi Iwasawa, who introduced the systematic study of Z_p-extensions and p-adic L-functions, concentrating on the case of ideal class groups. Later this would be generalized to elliptic curves. Over the last few decades considerable progress has been made in automorphic Iwasawa theory, e.g. the proof of the Main Conjecture for GL(2) by Kato and Skinner & Urban. Techniques such as Hida’s theory of p-adic modular forms and big Galois representations play a crucial part. Also a noncommutative Iwasawa theory of arbitrary p-adic Lie extensions has been developed. This volume aims to present a snapshot of the state of art of Iwasawa theory as of 2012. In particular it offers an introduction to Iwasawa theory (based on a preparatory course by Chris Wuthrich) and a survey of the proof of Skinner & Urban (based on a lecture course by Xin Wan).
Download or read book Algebraic Number Theory written by H. Koch and published by Springer Science & Business Media. This book was released on 1997-09-12 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews of the first printing, published as Volume 62 of the Encyclopaedia of Mathematical Sciences: "... The author succeeded in an excellent way to describe the various points of view under which Class Field Theory can be seen. ... In any case the author succeeded to write a very readable book on these difficult themes." Monatshefte fuer Mathematik, 1994 "... Koch's book is written mostly for non-specialists. It is an up-to-date account of the subject dealing with mostly general questions. Special results appear only as illustrating examples for the general features of the theory. It is supposed that the reader has good general background in the fields of modern (abstract) algebra and elementary number theory. We recommend this volume mainly to graduate studens and research mathematicians." Acta Scientiarum Mathematicarum, 1993
Download or read book An Invitation To Algebraic Numbers And Algebraic Functions written by Franz Halter-Koch and published by CRC Press. This book was released on 2020-05-04 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author offers a thorough presentation of the classical theory of algebraic numbers and algebraic functions which both in its conception and in many details differs from the current literature on the subject. The basic features are: Field-theoretic preliminaries and a detailed presentation of Dedekind’s ideal theory including non-principal orders and various types of class groups; the classical theory of algebraic number fields with a focus on quadratic, cubic and cyclotomic fields; basics of the analytic theory including the prime ideal theorem, density results and the determination of the arithmetic by the class group; a thorough presentation of valuation theory including the theory of difference, discriminants, and higher ramification. The theory of function fields is based on the ideal and valuation theory developed before; it presents the Riemann-Roch theorem on the basis of Weil differentials and highlights in detail the connection with classical differentials. The theory of congruence zeta functions and a proof of the Hasse-Weil theorem represent the culminating point of the volume. The volume is accessible with a basic knowledge in algebra and elementary number theory. It empowers the reader to follow the advanced number-theoretic literature, and is a solid basis for the study of the forthcoming volume on the foundations and main results of class field theory. Key features: • A thorough presentation of the theory of Algebraic Numbers and Algebraic Functions on an ideal and valuation-theoretic basis. • Several of the topics both in the number field and in the function field case were not presented before in this context. • Despite presenting many advanced topics, the text is easily readable. Franz Halter-Koch is professor emeritus at the university of Graz. He is the author of “Ideal Systems” (Marcel Dekker,1998), “Quadratic Irrationals” (CRC, 2013), and a co-author of “Non-Unique Factorizations” (CRC 2006).
Download or read book Algebraic Groups and Class Fields written by Jean-Pierre Serre and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Translation of the French Edition