Download or read book The Borel Cantelli Lemma written by Tapas Kumar Chandra and published by Springer Science & Business Media. This book was released on 2012-07-04 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an extensive treatment of the theory and applications of the celebrated Borel-Cantelli Lemma. Starting from some of the basic facts of the axiomatic probability theory, it embodies the classical versions of these lemma, together with the well known as well as the most recent extensions of them due to Barndorff-Nielsen, Balakrishnan and Stepanov, Erdos and Renyi, Kochen and Stone, Petrov and the present author. The versions of the second Borel-Cantelli Lemma for pair wise negative quadrant dependent sequences, weakly *-mixing sequences, mixing sequences (due to Renyi) and for many other dependent sequences are all included. The special feature of the book is a detailed discussion of a strengthened form of the second Borel-Cantelli Lemma and the conditional form of the Borel-Cantelli Lemmas due to Levy, Chen and Serfling. All these results are well illustrated by means of many interesting examples. All the proofs are rigorous, complete and lucid. An extensive list of research papers, some of which are forthcoming, is provided. The book can be used for a self study and as an invaluable research reference on the present topic.
Download or read book Real Analysis Classic Version written by Halsey Royden and published by Pearson Modern Classics for Advanced Mathematics Series. This book was released on 2017-02-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Download or read book Measure Theory and Probability written by Malcolm Adams and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: "...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will appreciate the numerous informative exercises; helpful hints or solution outlines are given with many of the problems. All in all, the text should make a useful reference for professionals and students."—The Journal of the American Statistical Association
Download or read book Principles of Random Walk written by Frank Spitzer and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted exclusively to a very special class of random processes, namely, to random walk on the lattice points of ordinary Euclidian space. The author considers this high degree of specialization worthwhile because the theory of such random walks is far more complete than that of any larger class of Markov chains. Almost 100 pages of examples and problems are included.
Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Download or read book Probability Space written by Nancy Kress and published by Macmillan. This book was released on 2004-01-05 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nancy Kress cemented her reputation in SF with the publication of her multiple-award–winning novella, “Beggars in Spain,” which became the basis for her extremely successful Beggars Trilogy (comprising Beggars in Spain, Beggars and Choosers, and Beggars Ride). And now she brings us Probability Space, the conclusion of the trilogy that began with Probability Moon and then Probability Sun, which is centered on the same world as Kress’s Nebula Award-winning novelette, “Flowers of Aulit Prison.” The Probability Trilogy has already been widely recognized as the next great work by this important SF writer. In Probability Space, humanity’s war with the alien Fallers continues, and it is a war we are losing. Our implacable foes ignore all attempts at communication, and they take no prisoners. Our only hope lies with an unlikely coalition: Major Lyle Kaufman, retired warrior; Marbet Grant, the Sensitive who’s involved with Kaufman; Amanda, a very confused fourteen-year-old girl; and Magdalena, one of the biggest power brokers in all of human space. As the action moves from Earth to Mars to the farthest reaches of known space, with civil unrest back home and alien war in deep space, four humans--armed with little more than an unproven theory--try to enter the Fallers’ home star system. It’s a desperate gamble, and the fate of the entire universe may hang in the balance.
Download or read book Brownian Motion written by Peter Mörters and published by Cambridge University Press. This book was released on 2010-03-25 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Download or read book Probability and Measure written by Patrick Billingsley and published by John Wiley & Sons. This book was released on 2017 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes
Download or read book Probabilistic Databases written by Dan Suciu and published by Morgan & Claypool Publishers. This book was released on 2011 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-k query processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases. Table of Contents: Overview / Data and Query Model / The Query Evaluation Problem / Extensional Query Evaluation / Intensional Query Evaluation / Advanced Techniques
Download or read book Markov Chains written by Pierre Bremaud and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.
Download or read book A Modern Approach to Probability Theory written by Bert E. Fristedt and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.
Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Download or read book Probability A Graduate Course written by Allan Gut and published by Springer Science & Business Media. This book was released on 2006-03-16 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.
Download or read book Real Analysis with Economic Applications written by Efe A. Ok and published by Princeton University Press. This book was released on 2011-09-05 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many mathematics textbooks on real analysis, but they focus on topics not readily helpful for studying economic theory or they are inaccessible to most graduate students of economics. Real Analysis with Economic Applications aims to fill this gap by providing an ideal textbook and reference on real analysis tailored specifically to the concerns of such students. The emphasis throughout is on topics directly relevant to economic theory. In addition to addressing the usual topics of real analysis, this book discusses the elements of order theory, convex analysis, optimization, correspondences, linear and nonlinear functional analysis, fixed-point theory, dynamic programming, and calculus of variations. Efe Ok complements the mathematical development with applications that provide concise introductions to various topics from economic theory, including individual decision theory and games, welfare economics, information theory, general equilibrium and finance, and intertemporal economics. Moreover, apart from direct applications to economic theory, his book includes numerous fixed point theorems and applications to functional equations and optimization theory. The book is rigorous, but accessible to those who are relatively new to the ways of real analysis. The formal exposition is accompanied by discussions that describe the basic ideas in relatively heuristic terms, and by more than 1,000 exercises of varying difficulty. This book will be an indispensable resource in courses on mathematics for economists and as a reference for graduate students working on economic theory.
Download or read book A Course in Large Sample Theory written by Thomas S. Ferguson and published by Routledge. This book was released on 2017-09-06 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.
Download or read book A Graduate Course in Probability written by Howard G. Tucker and published by Courier Corporation. This book was released on 2014-02-20 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Suitable for a graduate course in analytic probability, this text requires only a limited background in real analysis. Topics include probability spaces and distributions, stochastic independence, basic limiting options, strong limit theorems for independent random variables, central limit theorem, conditional expectation and Martingale theory, and an introduction to stochastic processes"--