Download or read book Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations written by Werner Balser and published by Springer Science & Business Media. This book was released on 2008-01-19 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series.
Download or read book The Asymptotic Solution of Linear Differential Systems written by Michael Stephen Patrick Eastham and published by Oxford University Press, USA. This book was released on 1989 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: An account from 1975-1988 of the developments in the application of the modern asymptotic theory of linear differential systems, which dates from the Levinson Theorem of 1948. The main results and techniques are identified and earlier results are placed in a wider context.
Download or read book Asymptotic Expansions for Ordinary Differential Equations written by Wolfgang Wasow and published by Courier Dover Publications. This book was released on 2018-03-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outstanding text concentrates on the mathematical ideas underlying various asymptotic methods for ordinary differential equations that lead to full, infinite expansions. "A book of great value." — Mathematical Reviews. 1976 revised edition.
Download or read book Recent Trends In Differential Equations written by Ravi P Agarwal and published by World Scientific. This book was released on 1992-05-07 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series aims at reporting new developments of a high mathematical standard and of current interest. Each volume in the series shall be devoted to mathematical analysis that has been applied, or potentially applicable to the solutions of scientific, engineering, and social problems. The first volume of WSSIAA contains 42 research articles on differential equations by leading mathematicians from all over the world. This volume has been dedicated to V Lakshmikantham on his 65th birthday for his significant contributions in the field of differential equations.
Download or read book Asymptotics and Mellin Barnes Integrals written by R. B. Paris and published by Cambridge University Press. This book was released on 2001-09-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotics and Mellin-Barnes Integrals, first published in 2001, provides an account of the use and properties of a type of complex integral representation that arises frequently in the study of special functions typically of interest in classical analysis and mathematical physics. After developing the properties of these integrals, their use in determining the asymptotic behaviour of special functions is detailed. Although such integrals have a long history, the book's account includes recent research results in analytic number theory and hyperasymptotics. The book also fills a gap in the literature on asymptotic analysis and special functions by providing a thorough account of the use of Mellin-Barnes integrals that is otherwise not available in other standard references on asymptotics.
Download or read book Advanced Mathematical Methods for Scientists and Engineers I written by Carl M. Bender and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Download or read book Singular Differential Equations and Special Functions written by Luis Manuel Braga da Costa Campos and published by CRC Press. This book was released on 2019-11-05 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions. Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions
Download or read book Fusion Energy Update written by and published by . This book was released on 1985 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Selected Papers of F W J Olver written by Frank W. J. Olver and published by World Scientific. This book was released on 2000 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Basic Theory of Ordinary Differential Equations written by Po-Fang Hsieh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.
Download or read book Special Functions written by Sergeĭ I︠U︡rʹevich Slavi︠a︡nov and published by Oxford University Press, USA. This book was released on 2000 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is the theory of special functions, not considered as a list of functions exhibiting a certain range of properties, but based on the unified study of singularities of second-order ordinary differential equations in the complex domain. The number and characteristics of the singularities serve as a basis for classification of each individual special function. Links between linear special functions (as solutions of linear second-order equations), and non-linear special functions (as solutions of Painlevé equations) are presented as a basic and new result. Many applications to different areas of physics are shown and discussed. The book is written from a practical point of view and will address all those scientists whose work involves applications of mathematical methods. Lecturers, graduate students and researchers will find this a useful text and reference work.
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1973 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Exact Solutions for Ordinary Differential Equations written by Valentin F. Zaitsev and published by CRC Press. This book was released on 2002-10-28 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exact solutions of differential equations continue to play an important role in the understanding of many phenomena and processes throughout the natural sciences in that they can verify the correctness of or estimate errors in solutions reached by numerical, asymptotic, and approximate analytical methods. The new edition of this bestselling handboo
Download or read book Generalized Fractional Calculus and Applications written by Virginia S Kiryakova and published by CRC Press. This book was released on 1993-12-27 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume various applications are discussed, in particular to the hyper-Bessel differential operators and equations, Dzrbashjan-Gelfond-Leontiev operators and Borel type transforms, convolutions, new representations of hypergeometric functions, solutions to classes of differential and integral equations, transmutation method, and generalized integral transforms. Some open problems are also posed. This book is intended for graduate and post-graduate students, lecturers, researchers and others working in applied mathematical analysis, mathematical physics and related disciplines.
Download or read book Energy Research Abstracts written by and published by . This book was released on 1985 with total page 1080 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Encyclopedic Dictionary of Mathematics written by Nihon Sūgakkai and published by MIT Press. This book was released on 1993 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: V.1. A.N. v.2. O.Z. Apendices and indexes.
Download or read book Analysis I written by Revaz V. Gamkrelidze and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite series, and their analogues-integral representations, became fundamental tools in mathematical analysis, starting in the second half of the seventeenth century. They have provided the means for introducing into analysis all o( the so-called transcendental functions, including those which are now called elementary (the logarithm, exponential and trigonometric functions). With their help the solutions of many differential equations, both ordinary and partial, have been found. In fact the whole development of mathematical analysis from Newton up to the end of the nineteenth century was in the closest way connected with the development of the apparatus of series and integral representations. Moreover, many abstract divisions of mathematics (for example, functional analysis) arose and were developed in order to study series. In the development of the theory of series two basic directions can be singled out. One is the justification of operations with infmite series, the other is the creation of techniques for using series in the solution of mathematical and applied problems. Both directions have developed in parallel Initially progress in the first direction was significantly smaller, but, in the end, progress in the second direction has always turned out to be of greater difficulty.