Download or read book Onsite Wastewater Treatment Systems Manual written by and published by . This book was released on 2002 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.
Download or read book Onsite Wastewater Treatment Systems written by Bennette Day Burks and published by Hogarth House Limited. This book was released on 1994-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advanced Onsite Wastewater Systems Technologies written by Anish R. Jantrania and published by CRC Press. This book was released on 2006-01-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing on the authors' combined experience of more than 30 years, Advanced Onsite Wastewater Systems Technologies explores use of these technologies on a wide-scale basis to solve the problems associated with conventional septic tank and drain field systems. The authors discuss a regulatory and management infrastructure for ensuring long-term, rel
Download or read book Planning and Installing Sustainable Onsite Wastewater Systems written by S. M. Parten and published by McGraw-Hill Education. This book was released on 2009-11-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. A detailed Guide to Sustainable Decentralized Wastewater Systems Covering technical principles and practical applications, this comprehensive resource explains how to design and construct sound and sustainable decentralized wastewater systems of varying sizes and in differing geophysical conditions. Planning and Installing Sustainable Onsite Wastewater Systems covers state-of-the-art techniques, materials, and industry practices, and provides detailed explanations for why certain approaches result in more sustainable projects. A rational approach is presented for assessing assimilative capabilities of soils, and selecting methods of wastewater treatment and dispersal that make optimal use of natural treatment processes and site conditions. In-depth design and construction information highlights nonproprietary methods proven to be very sustainable and cost effective on a long-term basis for many geographic settings. Step-by-step illustrations and project examples featuring real-world implementations of onsite wastewater systems are included in this definitive volume. Planning and Installing Sustainable Wastewater Systems covers: Sustainability factors and planning considerations for decentralized wastewater systems Project planning and site evaluation Wastewater collection and conveyance methods Design and installation of primary treatment units Comparisons of secondary and advanced treatment methods Sand filter construction Subsurface flow wetland performance and construction Effluent dispersal methods Design and installation of low-pressure dosed effluent dispersal systems
Download or read book EPA 625 1 written by and published by . This book was released on 1983-10 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Manual of Individual Water Supply Systems written by United States. Environmental Protection Agency. Water Supply Division and published by . This book was released on 1974 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Individual Sewage disposal Systems written by United States. Veterans Administration and published by . This book was released on 1955 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Practical Wastewater Treatment written by David L. Russell and published by John Wiley & Sons. This book was released on 2006-08-28 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical techniques for handling industrial waste and designing treatment facilities Practical Wastewater Treatment is designed as a teaching and training tool for chemical, civil, and environmental engineers. Based on an AIChE training course, developed and taught by the author, this manual equips readers with the skills and knowledge needed to design a wastewater treatment plant and handle various types of industrial wastes. With its emphasis on design issues and practical considerations, the manual enables readers to master treatment techniques for managing a wide range of industrial wastes, including oil, blood and protein, milk, plating, refinery, and phenolic and chemical plant wastes. A key topic presented in the manual is biological modeling for designing wastewater treatment plants. The author demonstrates how these models lead to both more efficient and more economical plants. As a practical training tool, this manual contains a number of features to assist readers in tackling complex, real-world problems, including: * Examples and worked problems throughout the manual demonstrate how various treatment plants and treatment techniques work * Figures and diagrams help readers visualize and understand complex design issues * References as well as links to online resources serve as a gateway to additional information * Practical design hints, stemming from the author's extensive experience, help readers save time and avoid unwanted and expensive pitfalls * Clear and logically organized presentation has been developed and refined based on an AIChE course taught by the author in the United States, Mexico, and Venezuela Whether a novice or experienced practitioner, any engineer who deals with the treatment of industrial waste will find a myriad of practical advice and useful techniques that they can immediately apply to solve problems in wastewater treatment.
Download or read book Land Treatment Systems for Municipal and Industrial Wastes written by Ronald W. Crites and published by McGraw Hill Professional. This book was released on 2000-03-17 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: A-Z guide to soil/plant/microbe-based wastewatertreatment Engineers and planners eager to benefit from the costefficiencies and convenience of land treatment of waste will find practical guidelines in this comprehensive manual. It covers soil hydraulics, vegetation selection, site selection, field investigations, preapplication treatment and storage, and transmission and distribution of wastewater. You're introduced to: Design procedures and appropriate uses for each of the three land treatment processes: soils, plants, and microbiological agents Special attributes of food processing wastewater, with 6 case studies The use of biosolids produced by mechanical treatment systems as crop nutrients Options for preapplication treatment, including ponds and constructed wetlands Much more
Download or read book How to Design Wastewater Systems for Local Conditions in Developing Countries written by David M. Robbins and published by IWA Publishing. This book was released on 2014-03-15 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a practical handbook providing a step-by-step approach to the techniques used for characterizing wastewater sources and investigating sites where collection, treatment and reuse/disposal technologies will be installed. It is intended to help enable local implementation of on-site and decentralized wastewater management system (DWMS)for wide scale use in development settings. How to Design Wastewater Systems for Local Conditions in Developing Countries helps local service providers and regulatory officials make informed decisions through the use of tools, checklists and case studies. It includes a link to a web based community of on-site and decentralized wastewater professionals, which contains related tools and case studies. This handbook serves as a reference for training classes, certification programs, and higher education programs in civil and sanitary engineering. There is an increasing interest on the part of local government officials and private sector service providers to implement wastewater treatment systems to solve sanitation problems. The model presented in this handbook promotes activities that first generate data related to source and site conditions that represent critical inputs, and then applies this information to the technology selection process. Matching the most appropriate technologies to the specific needs of the wastewater project is the key that leads to long term sustainability. How to Design Wastewater Systems for Local Conditions in Developing Countries is an invaluable resource for public sector decision makers and private sector service providers in developing countries. It is also a useful text for students at engineering colleges in developing countries interested in taking a class that teaches the methods of decentralized wastewater management system (DWMS) development.
Download or read book Wastewater Characteristics Treatment and Disposal written by Marcos Von Sperling and published by IWA Publishing. This book was released on 2007-03-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations for the topics that are analysed in more detail in the other books of the series. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilisation Ponds; Volume 4: Anaerobic Reactors; Volume 5: Activated Sludge and Aerobic Biofilm Reactors; Volume 6: Sludge Treatment and Disposal
Download or read book Wastewater Reclamation and Reuse written by Takashi Asano and published by CRC Press. This book was released on 1998-06-15 with total page 1570 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effective integration of water and reclaimed wastewater still requires close examination of public health issues, infrastructure and facilities planning, wastewater treatment plant siting, treatment process reliability, economic and financial analyses, and water utility management. This book assembles, analyzes, and reviews the various aspects of wastewater reclamation, recycling, and reuse in most parts of the world. It considers the effective integration of water and reclaimed wastewater, public health issues, infrastructure and facilities planning, waste-water treatment plant siting, treatment process reliability, economic and financial analysis, and water utility management.
Download or read book Industrial Wastewater Treatment Recycling and Reuse written by Vivek V. Ranade and published by Butterworth-Heinemann. This book was released on 2014-07-21 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions
Download or read book Innovative Wastewater Treatment Resource Recovery Technologies Impacts on Energy Economy and Environment written by Juan M. Lema and published by IWA Publishing. This book was released on 2017-06-15 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.
Download or read book Wastewater Treatment written by D. G. Rao and published by CRC Press. This book was released on 2012-07-05 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing new technologies that produce clean water and energy from the wastewater treatment process, this book presents recent advancements in wastewater treatment by various technologies such as chemical methods, biochemical methods, membrane separation techniques, and nanotechnology. It addresses sustainable water reclamation, biomembrane treatment processes, advanced oxidation processes, and applications of nanotechnology for wastewater treatment. It also includes integrated cost-based design methodologies. Equations, figures, photographs and tables are included within the chapters to aid reader comprehension. Case studies and examples are included as well.
Download or read book Source Separation and Decentralization for Wastewater Management written by Tove A. Larsen and published by IWA Publishing. This book was released on 2013-02-01 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group
Download or read book Fundamentals of Wastewater Treatment and Engineering written by Rumana Riffat and published by CRC Press. This book was released on 2022-04-27 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2nd edition of Fundamentals of Wastewater Treatment and Design introduces readers to the fundamental concepts of wastewater treatment, followed by engineering design of unit processes for sustainable treatment of municipal wastewater and resource recovery. It has been completely updated with new chapters to reflect current advances in design, resource recovery practices and research. Another highlight is the addition of the last chapter, which provides a culminating design experience of both urban and rural wastewater treatment systems. Filling the need for a textbook focused on wastewater, it covers history, current practices, emerging concerns, future directions and pertinent regulations that have shaped the objectives of this important area of engineering. Basic principles of reaction kinetics, reactor design and environmental microbiology are introduced along with natural purification processes. It also details the design of unit processes for primary, secondary and advanced treatment, as well as solids processing and removal. Recovery of water, energy and nutrients are explained with the help of process concepts and design applications. This textbook is designed for undergraduate and graduate students who have some knowledge of environmental chemistry and fluid mechanics. Professionals in the wastewater industry will also find this a handy reference.