EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book On Riemann s Theory of Algebraic Functions and Their Integrals

Download or read book On Riemann s Theory of Algebraic Functions and Their Integrals written by Felix Klein and published by Courier Dover Publications. This book was released on 2018-10-17 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: A great researcher, writer, and teacher in an era of tremendous mathematical ferment, Felix Klein (1849–1925) occupies a prominent place in the history of mathematics. His many talents included an ability to express complicated mathematical ideas directly and comprehensively, and this book, a consideration of the investigations in the first part of Riemann's Theory of Abelian Functions, is a prime example of his expository powers. The treatment introduces Riemann's approach to multiple-value functions and the geometrical representation of these functions by what later became known as Riemann surfaces. It further concentrates on the kinds of functions that can be defined on these surfaces, confining the treatment to rational functions and their integrals. The text then demonstrates how Riemann's mathematical ideas about Abelian integrals can be arrived at by thinking in terms of the flow of electric current on surfaces. Klein's primary concern is preserving the sequence of thought and offering intuitive explanations of Riemann's notions, rather than furnishing detailed proofs. Deeply significant in the area of complex functions, this work constitutes one of the best introductions to the origins of topological problems.

Book On Riemann s Theory of Algebraic Functions and Their Integrals

Download or read book On Riemann s Theory of Algebraic Functions and Their Integrals written by Felix Klein and published by Cosimo, Inc.. This book was released on 2007-04-01 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: German mathematician FELIX KLEIN (1849-1925), a great teacher and scientific thinker, significantly advanced the field of mathematical physics and made a number of profound discoveries in the field of geometry. In his scholarly supplement to Riemann's complex mathematical theory, rather than offer proofs in support of the theorem, Klein chose to offer this exposition and annotation, first published in 1893, in an effort to broaden and deepen understanding. This approach makes Klein's commentary an essential element of any mathematics scholar's library.

Book Theory of Algebraic Functions of One Variable

Download or read book Theory of Algebraic Functions of One Variable written by Richard Dedekind and published by American Mathematical Soc.. This book was released on 2012-07-23 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first English translation of the classic long paper Theorie der algebraischen Functionen einer Veranderlichen (Theory of algebraic functions of one variable), published by Dedekind and Weber in 1882. The translation has been enriched by a Translator's Introduction that includes historical background, and also by extensive commentary embedded in the translation itself. The translation, introduction, and commentary provide the first easy access to this important paper for a wide mathematical audience: students, historians of mathematics, and professional mathematicians. Why is the Dedekind-Weber paper important? In the 1850s, Riemann initiated a revolution in algebraic geometry by interpreting algebraic curves as surfaces covering the sphere. He obtained deep and striking results in pure algebra by intuitive arguments about surfaces and their topology. However, Riemann's arguments were not rigorous, and they remained in limbo until 1882, when Dedekind and Weber put them on a sound foundation. The key to this breakthrough was to develop the theory of algebraic functions in analogy with Dedekind's theory of algebraic numbers, where the concept of ideal plays a central role. By introducing such concepts into the theory of algebraic curves, Dedekind and Weber paved the way for modern algebraic geometry.

Book Algebraic Curves and Riemann Surfaces

Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Book A Course in Complex Analysis and Riemann Surfaces

Download or read book A Course in Complex Analysis and Riemann Surfaces written by Wilhelm Schlag and published by American Mathematical Society. This book was released on 2014-08-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.

Book Riemann  Topology  and Physics

Download or read book Riemann Topology and Physics written by Michael Monastyrsky and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soviet citizens can buy Monastyrsky's biography of Riemann for eleven kopeks. This translated edition will cost considerably more, but it is still good value for the money. And we get Monastyrsky's monograph on topological methods in the bargain. It was a good idea of Birkhiiuser Boston to publish the two translations in one volume. The economics of publishing in a capitalist country make it impossible for us to produce the small cheap paperback booklets, low in quality of paper and high in quality of scholarship, at which the Soviet publishing industry excels. Monastyrsky's two booklets are out standing examples of the genre. By putting them together, Birkhiiuser has enabled them to fit into the Western book-marketing system. The two booklets were written separately and each is complete in itself, but they complement each other beautifully. The Riemann biography is short and terse, like Riemann's own writings. It describes in few words and fewer equations the revolutionary ideas which Riemann brought into mathematics and physics a hundred and twenty years ago. The topological methods booklet describes how some of these same ideas, after lying dormant for a century, found new and fruitful applications in the physics of our own time.

Book From Riemann to Differential Geometry and Relativity

Download or read book From Riemann to Differential Geometry and Relativity written by Lizhen Ji and published by Springer. This book was released on 2017-10-03 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.

Book Introduction to the Classical Theory of Abelian Functions

Download or read book Introduction to the Classical Theory of Abelian Functions written by Alekseĭ Ivanovich Markushevich and published by American Mathematical Soc.. This book was released on 1992 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of Abelian functions, which was at the center of nineteenth-century mathematics, is again attracting attention. However, today it is frequently seen not just as a chapter of the general theory of functions but as an area of application of the ideas and methods of commutative algebra. This book presents an exposition of the fundamentals of the theory of Abelian functions based on the methods of the classical theory of functions. This theory includes the theory of elliptic functions as a special case. Among the topics covered are theta functions, Jacobians, and Picard varieties. The author has aimed the book primarily at intermediate and advanced graduate students, but it would also be accessible to the beginning graduate student or advanced undergraduate who has a solid background in functions of one complex variable. This book will prove especially useful to those who are not familiar with the analytic roots of the subject. In addition, the detailed historical introduction cultivates a deep understanding of the subject. Thorough and self-contained, the book will provide readers with an excellent complement to the usual algebraic approach.

Book Basic Algebraic Geometry 2

Download or read book Basic Algebraic Geometry 2 written by Igor R. Shafarevich and published by Springer. This book was released on 2012-11-27 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with first volume the author has revised the text and added new material. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of the first volume and is suitable for beginning graduate students.

Book Complex Functions

    Book Details:
  • Author : Gareth A. Jones
  • Publisher : Cambridge University Press
  • Release : 1987-03-19
  • ISBN : 9780521313667
  • Pages : 362 pages

Download or read book Complex Functions written by Gareth A. Jones and published by Cambridge University Press. This book was released on 1987-03-19 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: An elementary account of many aspects of classical complex function theory, including Mobius transformations, elliptic functions, Riemann surfaces, Fuchsian groups and modular functions. The book is based on lectures given to advanced undergraduate students and is well suited as a textbook for a second course in complex function theory.

Book A Combinatorial Introduction to Topology

Download or read book A Combinatorial Introduction to Topology written by Michael Henle and published by Courier Corporation. This book was released on 1994-01-01 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Book Doing Mathematics  Convention  Subject  Calculation  Analogy  2nd Edition

Download or read book Doing Mathematics Convention Subject Calculation Analogy 2nd Edition written by Martin H Krieger and published by World Scientific. This book was released on 2015-01-15 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Mathematics discusses some ways mathematicians and mathematical physicists do their work and the subject matters they uncover and fashion. The conventions they adopt, the subject areas they delimit, what they can prove and calculate about the physical world, and the analogies they discover and employ, all depend on the mathematics — what will work out and what won't. The cases studied include the central limit theorem of statistics, the sound of the shape of a drum, the connections between algebra and topology, and the series of rigorous proofs of the stability of matter. The many and varied solutions to the two-dimensional Ising model of ferromagnetism make sense as a whole when they are seen in an analogy developed by Richard Dedekind in the 1880s to algebraicize Riemann's function theory; by Robert Langlands' program in number theory and representation theory; and, by the analogy between one-dimensional quantum mechanics and two-dimensional classical statistical mechanics. In effect, we begin to see 'an identity in a manifold presentation of profiles,' as the phenomenologists would say.This second edition deepens the particular examples; it describe the practical role of mathematical rigor; it suggests what might be a mathematician's philosophy of mathematics; and, it shows how an 'ugly' first proof or derivation embodies essential features, only to be appreciated after many subsequent proofs. Natural scientists and mathematicians trade physical models and abstract objects, remaking them to suit their needs, discovering new roles for them as in the recent case of the Painlevé transcendents, the Tracy-Widom distribution, and Toeplitz determinants. And mathematics has provided the models and analogies, the ordinary language, for describing the everyday world, the structure of cities, or God's infinitude.

Book Theory of Functions of a Complex Variable

Download or read book Theory of Functions of a Complex Variable written by Andrew Russell Forsyth and published by . This book was released on 1900 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A History of Analysis

    Book Details:
  • Author : Hans Niels Jahnke
  • Publisher : American Mathematical Soc.
  • Release : 2003
  • ISBN : 0821826239
  • Pages : 434 pages

Download or read book A History of Analysis written by Hans Niels Jahnke and published by American Mathematical Soc.. This book was released on 2003 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis as an independent subject was created as part of the scientific revolution in the seventeenth century. Kepler, Galileo, Descartes, Fermat, Huygens, Newton, and Leibniz, to name but a few, contributed to its genesis. Since the end of the seventeenth century, the historical progress of mathematical analysis has displayed unique vitality and momentum. No other mathematical field has so profoundly influenced the development of modern scientific thinking. Describing this multidimensional historical development requires an in-depth discussion which includes a reconstruction of general trends and an examination of the specific problems. This volume is designed as a collective work of authors who are proven experts in the history of mathematics. It clarifies the conceptual change that analysis underwent during its development while elucidating the influence of specific applications and describing the relevance of biographical and philosophical backgrounds. The first ten chapters of the book outline chronological development and the last three chapters survey the history of differential equations, the calculus of variations, and functional analysis. Special features are a separate chapter on the development of the theory of complex functions in the nineteenth century and two chapters on the influence of physics on analysis. One is about the origins of analytical mechanics, and one treats the development of boundary-value problems of mathematical physics (especially potential theory) in the nineteenth century. The book presents an accurate and very readable account of the history of analysis. Each chapter provides a comprehensive bibliography. Mathematical examples have been carefully chosen so that readers with a modest background in mathematics can follow them. It is suitable for mathematical historians and a general mathematical audience.

Book Functionals of Finite Riemann Surfaces

Download or read book Functionals of Finite Riemann Surfaces written by Menahem Schiffer and published by Princeton University Press. This book was released on 2015-12-08 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: An investigation of finite Riemann surfaces from the point of view of functional analysis, that is, the study of the various Abelian differentials of the surface in their dependence on the surface itself. Many new results are presented. Originally published in 1954. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Book Algebraic Topology

    Book Details:
  • Author : Marvin J. Greenberg
  • Publisher : CRC Press
  • Release : 2018-03-05
  • ISBN : 0429982038
  • Pages : 253 pages

Download or read book Algebraic Topology written by Marvin J. Greenberg and published by CRC Press. This book was released on 2018-03-05 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Great first book on algebraic topology. Introduces (co)homology through singular theory.

Book A History of Algebraic and Differential Topology  1900   1960

Download or read book A History of Algebraic and Differential Topology 1900 1960 written by Jean Dieudonné and published by Springer Science & Business Media. This book was released on 2009-09-01 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet