Download or read book Optimal Stopping and Free Boundary Problems written by Goran Peskir and published by Springer Science & Business Media. This book was released on 2006-11-10 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discloses a fascinating connection between optimal stopping problems in probability and free-boundary problems. It focuses on key examples and the theory of optimal stopping is exposed at its basic principles in discrete and continuous time covering martingale and Markovian methods. Methods of solution explained range from change of time, space, and measure, to more recent ones such as local time-space calculus and nonlinear integral equations. A chapter on stochastic processes makes the material more accessible. The book will appeal to those wishing to master stochastic calculus via fundamental examples. Areas of application include financial mathematics, financial engineering, and mathematical statistics.
Download or read book Advanced Simulation Based Methods for Optimal Stopping and Control written by Denis Belomestny and published by Springer. This book was released on 2018-01-31 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an advanced guide to optimal stopping and control, focusing on advanced Monte Carlo simulation and its application to finance. Written for quantitative finance practitioners and researchers in academia, the book looks at the classical simulation based algorithms before introducing some of the new, cutting edge approaches under development.
Download or read book Irreversible Decisions under Uncertainty written by Svetlana Boyarchenko and published by Springer Science & Business Media. This book was released on 2007-08-26 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, two highly experienced authors present an alternative approach to optimal stopping problems. The basic ideas and techniques of the approach can be explained much simpler than the standard methods in the literature on optimal stopping problems. The monograph will teach the reader to apply the technique to many problems in economics and finance, including new ones. From the technical point of view, the method can be characterized as option pricing via the Wiener-Hopf factorization.
Download or read book Great Expectations written by Yuan Shih Chow and published by . This book was released on 1971 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Time Inconsistent Control Theory with Finance Applications written by Tomas Björk and published by Springer Nature. This book was released on 2021-11-02 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications. In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and prospect theory in a dynamic context. For such models, the very concept of optimality becomes problematic, as the decision maker’s preferences change over time in a temporally inconsistent way. In this book, a time-inconsistent problem is viewed as a non-cooperative game between the agent’s current and future selves, with the objective of finding intrapersonal equilibria in the game-theoretic sense. A range of finance applications are provided, including problems with non-exponential discounting, mean-variance objective, time-inconsistent linear quadratic regulator, probability distortion, and market equilibrium with time-inconsistent preferences. Time-Inconsistent Control Theory with Finance Applications offers the first comprehensive treatment of time-inconsistent control and stopping problems, in both continuous and discrete time, and in the context of finance applications. Intended for researchers and graduate students in the fields of finance and economics, it includes a review of the standard time-consistent results, bibliographical notes, as well as detailed examples showcasing time inconsistency problems. For the reader unacquainted with standard arbitrage theory, an appendix provides a toolbox of material needed for the book.
Download or read book Algorithms to Live By written by Brian Christian and published by Macmillan. This book was released on 2016-04-19 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Algorithms to Live By' looks at the simple, precise algorithms that computers use to solve the complex 'human' problems that we face, and discovers what they can tell us about the nature and origin of the mind.
Download or read book The Theory of Optimal Stopping written by Yuan Shih Chow and published by Dover Publications. This book was released on 1991-01 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Optimal Stochastic Control Stochastic Target Problems and Backward SDE written by Nizar Touzi and published by Springer Science & Business Media. This book was released on 2012-09-25 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.
Download or read book Optimal Control Theory written by Donald E. Kirk and published by Courier Corporation. This book was released on 2012-04-26 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.
Download or read book Practical Methods for Optimal Control and Estimation Using Nonlinear Programming written by John T. Betts and published by SIAM. This book was released on 2010-01-01 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.
Download or read book Dynamic Optimization Second Edition written by Morton I. Kamien and published by Courier Corporation. This book was released on 2013-04-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
Download or read book Calculus of Variations and Optimal Control Theory written by Daniel Liberzon and published by Princeton University Press. This book was released on 2012 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Download or read book Sequential Stochastic Optimization written by R. Cairoli and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequential Stochastic Optimization provides mathematicians andapplied researchers with a well-developed framework in whichstochastic optimization problems can be formulated and solved.Offering much material that is either new or has never beforeappeared in book form, it lucidly presents a unified theory ofoptimal stopping and optimal sequential control of stochasticprocesses. This book has been carefully organized so that littleprior knowledge of the subject is assumed; its only prerequisitesare a standard graduate course in probability theory and somefamiliarity with discrete-parameter martingales. Major topics covered in Sequential Stochastic Optimization include: * Fundamental notions, such as essential supremum, stopping points,accessibility, martingales and supermartingales indexed by INd * Conditions which ensure the integrability of certain suprema ofpartial sums of arrays of independent random variables * The general theory of optimal stopping for processes indexed byInd * Structural properties of information flows * Sequential sampling and the theory of optimal sequential control * Multi-armed bandits, Markov chains and optimal switching betweenrandom walks
Download or read book Optimal Control written by Frank L. Lewis and published by John Wiley & Sons. This book was released on 2012-02-01 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: A NEW EDITION OF THE CLASSIC TEXT ON OPTIMAL CONTROL THEORY As a superb introductory text and an indispensable reference, this new edition of Optimal Control will serve the needs of both the professional engineer and the advanced student in mechanical, electrical, and aerospace engineering. Its coverage encompasses all the fundamental topics as well as the major changes that have occurred in recent years. An abundance of computer simulations using MATLAB and relevant Toolboxes is included to give the reader the actual experience of applying the theory to real-world situations. Major topics covered include: Static Optimization Optimal Control of Discrete-Time Systems Optimal Control of Continuous-Time Systems The Tracking Problem and Other LQR Extensions Final-Time-Free and Constrained Input Control Dynamic Programming Optimal Control for Polynomial Systems Output Feedback and Structured Control Robustness and Multivariable Frequency-Domain Techniques Differential Games Reinforcement Learning and Optimal Adaptive Control
Download or read book Optimal Control written by Michael Athans and published by Courier Corporation. This book was released on 2013-04-26 with total page 900 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.
Download or read book A Primer on the Calculus of Variations and Optimal Control Theory written by Mike Mesterton-Gibbons and published by American Mathematical Soc.. This book was released on 2009 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.
Download or read book Applied Stochastic Control of Jump Diffusions written by Bernt Øksendal and published by Springer Science & Business Media. This book was released on 2007-04-26 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.