EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book On Line Trajectory Optimization for Autonomous Air Vehicles

Download or read book On Line Trajectory Optimization for Autonomous Air Vehicles written by and published by . This book was released on 2007 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: Successful operation of next-generation unmanned air vehicles will demand a high level of autonomy. Autonomous low-level operation in a complex environment dictates a need for onboard, robust, reliable and efficient trajectory optimization. In this report, we develop and demonstrate an innovative combination of traditional analytical and numerical solution procedures to produce efficient, robust and reliable means for nonlinear flight path optimization in the presence of time-varying obstacles and threats. The trajectory generation problem is first formulated as an optimization problem using reduced-order dynamics that result from the natural time-scale separation that exists in the aircraft dynamics. Terrain information is incorporated directly into the formulation of the reduced-order dynamics, which significantly reduces the computational load and leads to a path planning solution that can be implemented in real-time. Various cases of terrain, pop-up obstacles/threats, and targets are simulated. A representative optimal trajectory is generated with in a high fidelity full-order nonlinear aircraft dynamics and compared with a solution obtained from a reduced-order optimization. The developed algorithm is flight demonstrated with a fixed-wing unmanned aircraft test-bed in which a neural network-based adaptive autopilot is integrated with the on-line trajectory optimization algorithm.

Book 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications  SPAWC

Download or read book 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications SPAWC written by IEEE Staff and published by . This book was released on 2018-06-25 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The workshop is devoted to advances in signal processing for wireless communications, networking, and information theory

Book Unmanned Aircraft Systems

Download or read book Unmanned Aircraft Systems written by Ella Atkins and published by John Wiley & Sons. This book was released on 2017-01-17 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: UNMANNED AIRCRAF T SYSTEMS UNMANNED AIRCRAF T SYSTEMS An unmanned aircraft system (UAS), sometimes called a drone, is an aircraft without a human pilot on board ??? instead, the UAS can be controlled by an operator station on the ground or may be autonomous in operation. UAS are capable of addressing a broad range of applications in diverse, complex environments. Traditionally employed in mainly military applications, recent regulatory changes around the world are leading to an explosion of interest and wide-ranging new applications for UAS in civil airspace. Covering the design, development, operation, and mission profiles of unmanned aircraft systems, this single, comprehensive volume forms a complete, stand-alone reference on the topic. The volume integrates with the online Wiley Encyclopedia of Aerospace Engineering, providing many new and updated articles for existing subscribers to that work. The chapters cover the following items: Airframe configurations and design (launch systems, power generation, propulsion) Operations (missions, integration issues, and airspace access) Coordination (multivehicle cooperation and human oversight) With contributions from leading experts, this volume is intended to be a valuable addition, and a useful resource, for aerospace manufacturers and suppliers, governmental and industrial aerospace research establishments, airline and aviation industries, university engineering and science departments, and industry analysts, consultants, and researchers.

Book Reconfigurable Autonomous Surface Vehicles

Download or read book Reconfigurable Autonomous Surface Vehicles written by Banti Henricus Gheneti and published by . This book was released on 2019 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous Surface Vehicles (ASV) are a highly active area of robotics with many ongoing projects in search and rescue, environmental surveying, monitoring, and beyond. There have been significant studies on ASVs in riverine, coastal, and sea environments, yet only limited research on urban waterways, one of the most busy and important water environments. This thesis presents an Urban Autonomy System that is able to meet the critical precision, real-time and other requirements that are unique to ASVs in urban waterways. LiDAR-based perception algorithms are presented to enable robust and precise obstacle avoidance and object pose estimation on the water. Additionally, operating ASVs in well-networked urban waterways creates many potential use cases for ASVs to serve as re-configurable urban infrastructure, but this necessitates developing novel multi-robot planners for urban ASV operations. Efficient sequential quadratic programming and real-time B-spline parameterized mixed-integer quadratic programming multi-ASV motion planners are presented respectively for formation changing and shapeshifting operations, enabling use cases such as ASV docking and bridge-building on water. These methods increase the potential of urban and non-urban ASVs in the field. The underlying planners in turn contribute to the motion planning and trajectory optimization toolbox for unmanned aerial vehicles (UAVs), self-driving cars, and other autonomous systems.

Book Time Critical Cooperative Control of Autonomous Air Vehicles

Download or read book Time Critical Cooperative Control of Autonomous Air Vehicles written by Isaac Kaminer and published by Butterworth-Heinemann. This book was released on 2017-08-02 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-Critical Cooperative Control of Autonomous Air Vehicles presents, in an easy-to-read style, the latest research conducted in the industry, while also introducing a set of novel ideas that illuminate a new approach to problem-solving. The book is virtually self-contained, giving the reader a complete, integrated presentation of the different concepts, mathematical tools, and control solutions needed to tackle and solve a number of problems concerning time-critical cooperative control of UAVs. By including case studies of fixed-wing and multirotor UAVs, the book effectively broadens the scope of application of the methodologies developed. This theoretical presentation is complemented with the results of flight tests with real UAVs, and is an ideal reference for researchers and practitioners from academia, research labs, commercial companies, government workers, and those in the international aerospace industry. Addresses important topics related to time-critical cooperative control of UAVs Describes solutions to the problems rooted in solid dynamical systems theory Applies the solutions developed to fixed-wing and multirotor UAVs Includes the results of field tests with both classes of UAVs

Book Trajectory Optimization with Detection Avoidance for Visually Identifying an Aircraft

Download or read book Trajectory Optimization with Detection Avoidance for Visually Identifying an Aircraft written by Leonard Nathaniel Wholey and published by . This book was released on 2005 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned aerial vehicles (UAVs) play an essential role for the US Armed Forces by performing missions deemed as "dull, dirty and dangerous" for a pilot. As the capability of UAVs expand. they will perform a broader range of missions such as air-to-air combat. The focus of this thesis is forming trajectories for the closing phase of an air-to-air combat scenario. A UAV should close with the suspected aircraft in a manner that allows a ground operator to visually identify the suspected aircraft while avoiding visual/electronic detection from the other pilot. This thesis applies and compares three methods for producing trajectories which enable a visual identification. The first approach is formulated as a mixed integer linear programming problem which can be solved in real time. However, there are limitations to the accuracy of a radar detection model formed with only linear equations, which might justify using a nonlinear programming formulation. With this approach the interceptor's radar cross section and range between the suspected aircraft and interceptor can be incorporated into the problem formulation. The main limitation of this method is that the optimization software might not be able to reach online an optimal or even feasible solution. The third applied method is trajectory interpolation. In this approach, trajectories with specified boundary values and dynamics are formed offline; online, the method interpolates between the given trajectories to obtain similar maneuvers with different initial conditions and end- states. With this method, because the number of calculations required to produce a feasible trajectory is known, the amount of time to calculate a trajectory can be estimated.

Book Path Planning for Autonomous Vehicle

Download or read book Path Planning for Autonomous Vehicle written by Umar Zakir Abdul Hamid and published by BoD – Books on Demand. This book was released on 2019-10-02 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Path Planning (PP) is one of the prerequisites in ensuring safe navigation and manoeuvrability control for driverless vehicles. Due to the dynamic nature of the real world, PP needs to address changing environments and how autonomous vehicles respond to them. This book explores PP in the context of road vehicles, robots, off-road scenarios, multi-robot motion, and unmanned aerial vehicles (UAVs ).

Book Trajectory Optimization for Helicopter Unmanned Aerial Vehicles  UAVs

Download or read book Trajectory Optimization for Helicopter Unmanned Aerial Vehicles UAVs written by Benjamin Thomas Gatzke and published by . This book was released on 2010 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis explores the numerical methods and software development for optimal trajectories of a specific model of Helicopter Unmanned Aerial Vehicle (UAV) in an obstacle-rich environment. This particular model is adopted from the UAV Laboratory of the National University of Singapore who built and simulated flights for an X-Cell 60 small-scale UAV Helicopter. The code, which allowed the team to simulate flights, is a complex system of non-linear differential equations-5 state variables and four control variables-used to maneuver the state trajectories. This non-linear model is incorporated into a separate optimization algorithm code, which allows the user to set initial and final time conditions together with various constraints, and, using the same variable scheme, optimize a trajectory. The optimal trajectory is defined by using a cost function-the performance measure-and the system is subject to a set of constraints (such as mechanical limitations and physical three-dimensional obstacles). Simulations conclude that solutions are readily obtained; however, it is still very difficult to derive trajectories that are truly optimal, and our work calls for more future research in computational programs for optimal trajectory planning. All simulations in this thesis are modeled using the MATLAB program.

Book Sensing and Control for Autonomous Vehicles

Download or read book Sensing and Control for Autonomous Vehicles written by Thor I. Fossen and published by Springer. This book was released on 2017-05-26 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.

Book Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles

Download or read book Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles written by Jenna Elisabeth Newcomb and published by . This book was released on 2019 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: An unmanned aerial vehicle (UAV) swarm allows for a more time-efficient method of searching a specified area than a single UAV or piloted plane. There are a variety of factors that affect how well an area is surveyed. We specifically analyzed the effect both vehicle properties and communication had on the swarm search performance. We used non-dimensionalization so the results can be applied to any domain size with any type of vehicle. We found that endurance was the most important factor. Vehicles with good endurance sensed approximately 90% to 100% of the grid, even when other properties were lacking. If the vehicles lacked endurance, the amount of area the vehicles could sense at a given time step became more important and 10% more of the grid was sensed with the increase in sensed area. The maneuverability of the vehicles was measured as the vehicles' radii of turn compared to the search domain size. The maneuverability mattered the most in the middle-range endurance cases. In some cases 30% more of the grid was searched with improving vehicle maneuverability. In addition, we also examined four communication cases with different amounts of information regarding vehicle location. We found communication increased search performance by at least 6.3%. However, increasing the amount of information only changed the performance by 2.3%. We also studied the impact the range of vehicle communication had on search performance. We found that simulations benefited most from increasing the communication range when the amount of area sensed at a given time step was small and the vehicles had good maneuverability. We also extended the optimization to a multi-objective process with the inclusion of target tracking. We analyzed how the different weightings of the objectives affected the performance outcomes. We found that target tracking performance dramatically changes based on the given weighting of each objective and saw an increase of approximately 52%. However, the amount of the grid that was sensed only dropped by approximately 10%.

Book Autonomous Trajectory Planning and Guidance Control for Launch Vehicles

Download or read book Autonomous Trajectory Planning and Guidance Control for Launch Vehicles written by Zhengyu Song and published by Springer Nature. This book was released on 2023-04-15 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book highlights the autonomous and intelligent flight control of future launch vehicles for improving flight autonomy to plan ascent and descent trajectories onboard, and autonomously handle unexpected events or failures during the flight. Since the beginning of the twenty-first century, space launch activities worldwide have grown vigorously. Meanwhile, commercial launches also account for the booming trend. Unfortunately, the risk of space launches still exists and is gradually increasing in line with the rapidly rising launch activities and commercial rockets. In the history of space launches, propulsion and control systems are the two main contributors to launch failures. With the development of information technologies, the increase of the functional density of hardware products, the application of redundant or fault-tolerant solutions, and the improvement of the testability of avionics, the launch losses caused by control systems exhibit a downward trend, and the failures induced by propulsion systems become the focus of attention. Under these failures, the autonomous planning and guidance control may save the missions. This book focuses on the latest progress of relevant projects and academic studies of autonomous guidance, especially on some advanced methods which can be potentially real-time implemented in the future control system of launch vehicles. In Chapter 1, the prospect and technical challenges are summarized by reviewing the development of launch vehicles. Chapters 2 to 4 mainly focus on the flight in the ascent phase, in which the autonomous guidance is mainly reflected in the online planning. Chapters 5 and 6 mainly discuss the powered descent guidance technologies. Finally, since aerodynamic uncertainties exert a significant impact on the performance of the ascent / landing guidance control systems, the estimation of aerodynamic parameters, which are helpful to improve flight autonomy, is discussed in Chapter 7. The book serves as a valuable reference for researchers and engineers working on launch vehicles. It is also a timely source of information for graduate students interested in the subject.

Book Robust Trajectory Planning for Unmanned Aerial Vehicles in Uncertain Environments

Download or read book Robust Trajectory Planning for Unmanned Aerial Vehicles in Uncertain Environments written by Brandon Douglas Luders and published by . This book was released on 2008 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: As unmanned aerial vehicles (UAVs) take on more prominent roles in aerial missions, it becomes necessary to increase the level of autonomy available to them within the mission planner. In order to complete realistic mission scenarios, the UAV must be capable of operating within a complex environment, which may include obstacles and other no-fly zones. Additionally, the UAV must be able to overcome environmental uncertainties such as modeling errors, external disturbances, and an incomplete situational awareness. By utilizing planners which can autonomously navigate within such environments, the cost-effectiveness of UAV missions can be dramatically improved.This thesis develops a UAV trajectory planner to efficiently identify and execute trajectories which are robust to a complex, uncertain environment. This planner, named Efficient RSBK, integrates previous mixed-integer linear programming (MILP) path planning algorithms with several implementation innovations to achieve provably robust on-line trajectory optimization. Using the proposed innovations, the planner is able to design intelligent long-term plans using a minimal number of decision variables. The effectiveness of this planner is demonstrated with both simulation results and flight experiments on a quadrotor testbed.Two major components of the Efficient RSBK framework are the robust model predictive control (RMPC) scheme and the low-level planner. This thesis develops a generalized framework to investigate RMPC affine feedback policies on the disturbance, identify relative strengths and weaknesses, and assess suitability for the UAV trajectory planning problem. A simple example demonstrates that even with a conventional problem setup, the closed-loop performance may not always improve with additional decision variables, despite the resulting increase in computational complexity. A compatible low-level troller is also introduced which significantly improves trajectory-following accuracy, as demonstrated by additional flight experiments.

Book Advances in Unmanned Aerial Vehicles

Download or read book Advances in Unmanned Aerial Vehicles written by Kimon P. Valavanis and published by Springer Science & Business Media. This book was released on 2008-02-26 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.

Book Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles

Download or read book Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles written by Sameera S. Ponda and published by . This book was released on 2008 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) The UAV trajectory optimization is performed for stationary targets, dynamic targets and multiple targets, for many different scenarios of vehicle motion constraints. The resulting trajectories show spiral paths taken by the UAV, which focus on increasing the angular separation between measurements and reducing the relative range to the target, thus maximizing the information provided by each measurement and improving the performance of the estimation. The main drawback of information based trajectory design is the dependence of the Fisher Information Matrix on the true target location. This issue is addressed in this project by executing simultaneous target location estimation and UAV trajectory optimization. Two estimation algorithms, the Extended Kalman Filter and the Particle Filter are considered, and the trajectory optimization is performed using the mean value of the target estimation in lieu of the true target location. The estimation and optimization algorithms run in sequence and are updated in real-time. The results show spiral UAV trajectories that increase filter convergence and overall estimation accuracy, illustrating the importance of information-based trajectory design for target localization using small UAVs.

Book Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems

Download or read book Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems written by Runqi Chai and published by Springer. This book was released on 2019-07-30 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the design of optimal trajectories for space maneuver vehicles (SMVs) using optimal control-based techniques. It begins with a comprehensive introduction to and overview of three main approaches to trajectory optimization, and subsequently focuses on the design of a novel hybrid optimization strategy that combines an initial guess generator with an improved gradient-based inner optimizer. Further, it highlights the development of multi-objective spacecraft trajectory optimization problems, with a particular focus on multi-objective transcription methods and multi-objective evolutionary algorithms. In its final sections, the book studies spacecraft flight scenarios with noise-perturbed dynamics and probabilistic constraints, and designs and validates new chance-constrained optimal control frameworks. The comprehensive and systematic treatment of practical issues in spacecraft trajectory optimization is one of the book’s major features, making it particularly suited for readers who are seeking practical solutions in spacecraft trajectory optimization. It offers a valuable asset for researchers, engineers, and graduate students in GNC systems, engineering optimization, applied optimal control theory, etc.

Book Advanced Trajectory Optimization  Guidance and Control Strategies for Aerospace Vehicles

Download or read book Advanced Trajectory Optimization Guidance and Control Strategies for Aerospace Vehicles written by Runqi Chai and published by Springer Nature. This book was released on 2023-10-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the design and application of advanced trajectory optimization and guidance and control (G&C) techniques for aerospace vehicles. Part I of the book focuses on the introduction of constrained aerospace vehicle trajectory optimization problems, with particular emphasis on the design of high-fidelity trajectory optimization methods, heuristic optimization-based strategies, and fast convexification-based algorithms. In Part II, various optimization theory/artificial intelligence (AI)-based methods are constructed and presented, including dynamic programming-based methods, model predictive control-based methods, and deep neural network-based algorithms. Key aspects of the application of these approaches, such as their main advantages and inherent challenges, are detailed and discussed. Some practical implementation considerations are then summarized, together with a number of future research topics. The comprehensive and systematic treatment of practical issues in aerospace trajectory optimization and guidance and control problems is one of the main features of the book, which is particularly suitable for readers interested in learning practical solutions in aerospace trajectory optimization and guidance and control. The book is useful to researchers, engineers, and graduate students in the fields of G&C systems, engineering optimization, applied optimal control theory, etc.

Book Robust Trajectory Optimization and Control of a Dynamic Soaring Unmanned Aerial Vehicle

Download or read book Robust Trajectory Optimization and Control of a Dynamic Soaring Unmanned Aerial Vehicle written by Tristan Charles Flanzer and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A robust trajectory optimization method is formulated using a stochastic collocation based approach and is then applied to the design of periodic dynamic soaring trajectories for unmanned aerial vehicles (UAVs). Repetitive control is proposed and evaluated as a means for reducing tracking error for UAVs flying periodic trajectories both in simulation and experimentally. Experiments conducted in an indoor flying laboratory outfitted with a VICON motion capture system demonstrate significant reductions in tracking error even in the presence of large and unknown disturbances.