Download or read book On Graph Isomorphism and the PageRank Algorithm written by Christopher J. Augeri and published by . This book was released on 2008 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs express relationships among objects, such as the radio connectivity among nodes in unmanned vehicle swarms. Some applications may rank a swarm's nodes by their relative importance, for example, using the PageRank algorithm applied in certain search engines to order query responses. The PageRank values of the nodes correspond to a unique eigenvector that can be computed using the power method, an iterative technique based on matrix multiplication. The first result is a practical lower bound on the PageRank algorithm's execution time that is derived by applying assumptions to the PageRank perturbation's scaling value and the PageRank vector's required numerical precision. The second result establishes nodes contained in the same block of the graph's coarsest equitable partition must have equal PageRank values. The third result, the AverageRank algorithm, ensures such nodes are assigned equal PageRank values. The fourth result, the ProductRank algorithm, reduces the time needed to find the PageRank vector by eliminating certain dot products in the power method if the graph's coarsest equitable partition contains blocks composed of multiple vertices. The fifth result, the QuotientRank algorithm, uses a quotient matrix induced by the coarsest equitable partition to further reduce the time needed to compute a swarm's PageRank vector.
Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Download or read book Data Mining written by Charu C. Aggarwal and published by Springer. This book was released on 2015-04-13 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago
Download or read book Bisociative Knowledge Discovery written by Michael R. Berthold and published by Springer. This book was released on 2012-06-27 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern knowledge discovery methods enable users to discover complex patterns of various types in large information repositories. However, the underlying assumption has always been that the data to which the methods are applied to originates from one domain. The focus of this book, and the BISON project from which the contributions are originating, is a network based integration of various types of data repositories and the development of new ways to analyse and explore the resulting gigantic information networks. Instead of finding well defined global or local patterns they wanted to find domain bridging associations which are, by definition, not well defined since they will be especially interesting if they are sparse and have not been encountered before. The 32 contributions presented in this state-of-the-art volume together with a detailed introduction to the book are organized in topical sections on bisociation; representation and network creation; network analysis; exploration; and applications and evaluation.
Download or read book Principles of Distributed Database Systems written by M. Tamer Özsu and published by Springer Nature. This book was released on 2019-12-02 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition of this classic textbook provides major updates. This edition has completely new chapters on Big Data Platforms (distributed storage systems, MapReduce, Spark, data stream processing, graph analytics) and on NoSQL, NewSQL and polystore systems. It also includes an updated web data management chapter that includes RDF and semantic web discussion, an integrated database integration chapter focusing both on schema integration and querying over these systems. The peer-to-peer computing chapter has been updated with a discussion of blockchains. The chapters that describe classical distributed and parallel database technology have all been updated. The new edition covers the breadth and depth of the field from a modern viewpoint. Graduate students, as well as senior undergraduate students studying computer science and other related fields will use this book as a primary textbook. Researchers working in computer science will also find this textbook useful. This textbook has a companion web site that includes background information on relational database fundamentals, query processing, transaction management, and computer networks for those who might need this background. The web site also includes all the figures and presentation slides as well as solutions to exercises (restricted to instructors).
Download or read book Congressus Numerantium written by and published by . This book was released on 1970 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Domain Specific Computer Architectures for Emerging Applications written by Chao Wang and published by CRC Press. This book was released on 2024-06-04 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the end of Moore’s Law, domain-specific architecture (DSA) has become a crucial mode of implementing future computing architectures. This book discusses the system-level design methodology of DSAs and their applications, providing a unified design process that guarantees functionality, performance, energy efficiency, and real-time responsiveness for the target application. DSAs often start from domain-specific algorithms or applications, analyzing the characteristics of algorithmic applications, such as computation, memory access, and communication, and proposing the heterogeneous accelerator architecture suitable for that particular application. This book places particular focus on accelerator hardware platforms and distributed systems for various novel applications, such as machine learning, data mining, neural networks, and graph algorithms, and also covers RISC-V open-source instruction sets. It briefly describes the system design methodology based on DSAs and presents the latest research results in academia around domain-specific acceleration architectures. Providing cutting-edge discussion of big data and artificial intelligence scenarios in contemporary industry and typical DSA applications, this book appeals to industry professionals as well as academicians researching the future of computing in these areas.
Download or read book Algorithms and Models for the Web Graph written by William Aiello and published by Springer. This book was released on 2008-07-10 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the revised papers of the Fourth International Workshop on Algorithms and Models for the Web-Graph. It covers a wide range of topics in the study of the Web-graph such as algorithms, PageRank analysis and computational as well as clustering.
Download or read book Data Mining Foundations and Intelligent Paradigms written by Dawn E. Holmes and published by Springer Science & Business Media. This book was released on 2012-01-12 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 3: Medical, Health, Social, Biological and other Applications” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.
Download or read book Computer Analysis of Images and Patterns written by André Gagalowicz and published by Springer. This book was released on 2005-09-27 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of the 11th International Conference on Computer Analysis of Images and Patterns (CAIP 2005). This conference - ries started about 20 years ago in Berlin. Initially, the conference served as a forum for meetings between scientists from Western and Eastern-block co- tries. Nowadays, the conference attracts participants from all over the world. The conference gives equal weight to posters and oral presentations, and the selected presentation mode is based on the most appropriate communication medium. The program follows a single-track format, rather than parallel s- sions. Non-overlapping oral and poster sessions ensure that all attendees have the opportunity to interact personally with presenters. As for the numbers, we received a total of 185 submissions. All papers were reviewed by two to four members of the Program Committee. The ?nal selection was carried out by the Conference Chairs. Out of the 185 papers, 65 were - lected for oral presentation and 43 as posters. CAIP is becoming well recognized internationally, and this year’s presentations came from 26 di?erent countries. South Korea proved to be the most active scienti?cally with a total of 16 - cepted papers. At this point, we wish to thank the Program Committee and additional referees for their timely and high-quality reviews. The paper s- mission and review procedure was carried out electronically. We also thank the invited speakers Reinhardt Koch and Thomas Vetter for kindly accepting to present invited papers.
Download or read book Complex Networks Their Applications X written by Rosa Maria Benito and published by Springer Nature. This book was released on 2022-01-01 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students, and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the X International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2021). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks, and technological networks.
Download or read book Applied Graph Theory An Introduction With Graph Optimization And Algebraic Graph Theory written by Christopher H Griffin and published by World Scientific. This book was released on 2023-08-08 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introduction to graph theory and its applications. It is intended for a senior undergraduate course in graph theory but is also appropriate for beginning graduate students in science or engineering. The book presents a rigorous (proof-based) introduction to graph theory while also discussing applications of the results for solving real-world problems of interest. The book is divided into four parts. Part 1 covers the combinatorial aspects of graph theory including a discussion of common vocabulary, a discussion of vertex and edge cuts, Eulerian tours, Hamiltonian paths and a characterization of trees. This leads to Part 2, which discusses common combinatorial optimization problems. Spanning trees, shortest path problems and matroids are all discussed, as are maximum flow problems. Part 2 ends with a discussion of graph coloring and a proof of the NP-completeness of the coloring problem. Part 3 introduces the reader to algebraic graph theory, and focuses on Markov chains, centrality computation (e.g., eigenvector centrality and page rank), as well as spectral graph clustering and the graph Laplacian. Part 4 contains additional material on linear programming, which is used to provide an alternative analysis of the maximum flow problem. Two appendices containing prerequisite material on linear algebra and probability theory are also provided.
Download or read book Business and Consumer Analytics New Ideas written by Pablo Moscato and published by Springer. This book was released on 2019-05-30 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.
Download or read book Advanced Logic Synthesis written by André Inácio Reis and published by Springer. This book was released on 2017-11-15 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a single-source reference to the state-of-the-art in logic synthesis. Readers will benefit from the authors’ expert perspectives on new technologies and logic synthesis, new data structures, big data and logic synthesis, and convergent logic synthesis. The authors describe techniques that will enable readers to take advantage of recent advances in big data techniques and frameworks in order to have better logic synthesis algorithms.
Download or read book Pattern Recognition and Data Mining written by Sameer Singh and published by Springer. This book was released on 2005-09-16 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: This LNCS volume contains the papers presented at the 3rd International Conference on Advances in Pattern Recognition (ICAPR 2005) organized in August, 2005 in the beautiful city of Bath, UK.
Download or read book Advanced Graph Theory and Combinatorics written by Michel Rigo and published by John Wiley & Sons. This book was released on 2016-12-27 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Graph Theory focuses on some of the main notions arising in graph theory with an emphasis from the very start of the book on the possible applications of the theory and the fruitful links existing with linear algebra. The second part of the book covers basic material related to linear recurrence relations with application to counting and the asymptotic estimate of the rate of growth of a sequence satisfying a recurrence relation.
Download or read book Network Analysis written by Ulrik Brandes and published by Springer Science & Business Media. This book was released on 2005-02-09 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: ‘Network’ is a heavily overloaded term, so that ‘network analysis’ means different things to different people. Specific forms of network analysis are used in the study of diverse structures such as the Internet, interlocking directorates, transportation systems, epidemic spreading, metabolic pathways, the Web graph, electrical circuits, project plans, and so on. There is, however, a broad methodological foundation which is quickly becoming a prerequisite for researchers and practitioners working with network models. From a computer science perspective, network analysis is applied graph theory. Unlike standard graph theory books, the content of this book is organized according to methods for specific levels of analysis (element, group, network) rather than abstract concepts like paths, matchings, or spanning subgraphs. Its topics therefore range from vertex centrality to graph clustering and the evolution of scale-free networks. In 15 coherent chapters, this monograph-like tutorial book introduces and surveys the concepts and methods that drive network analysis, and is thus the first book to do so from a methodological perspective independent of specific application areas.