EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book On Graph Approaches to Contextuality and their Role in Quantum Theory

Download or read book On Graph Approaches to Contextuality and their Role in Quantum Theory written by Barbara Amaral and published by Springer. This book was released on 2018-07-28 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores two of the most striking features of quantum theory – contextuality and nonlocality – using a formulation based on graph theory. Quantum theory provides a set of rules to predict probabilities of different outcomes in different experimental settings, and both contextuality and nonlocality play a fundamental role in interpreting the outcomes. In this work, the authors highlight how the graph approach can lead to a better understanding of this theory and its applications. After presenting basic definitions and explaining the non-contextuality hypothesis, the book describes contextuality scenarios using compatibility hypergraphs. It then introduces the exclusivity graph approach, which relates a number of important graph-theoretical concepts to contextuality. It also presents open problems such as the so-called Exclusivity Principle, as well as a selection of important topics, like sheaf-theoretical approach, hypergraph approach, and alternative proofs of contextuality.

Book Quantum Nonlocality

    Book Details:
  • Author : Lev Vaidman
  • Publisher : MDPI
  • Release : 2019-06-12
  • ISBN : 3038979481
  • Pages : 238 pages

Download or read book Quantum Nonlocality written by Lev Vaidman and published by MDPI. This book was released on 2019-06-12 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the current views of leading physicists on the bizarre property of quantum theory: nonlocality. Einstein viewed this theory as “spooky action at a distance” which, together with randomness, resulted in him being unable to accept quantum theory. The contributions in the book describe, in detail, the bizarre aspects of nonlocality, such as Einstein–Podolsky–Rosen steering and quantum teleportation—a phenomenon which cannot be explained in the framework of classical physics, due its foundations in quantum entanglement. The contributions describe the role of nonlocality in the rapidly developing field of quantum information. Nonlocal quantum effects in various systems, from solid-state quantum devices to organic molecules in proteins, are discussed. The most surprising papers in this book challenge the concept of the nonlocality of Nature, and look for possible modifications, extensions, and new formulations—from retrocausality to novel types of multiple-world theories. These attempts have not yet been fully successful, but they provide hope for modifying quantum theory according to Einstein’s vision.

Book Contextuality from Quantum Physics to Psychology

Download or read book Contextuality from Quantum Physics to Psychology written by Ehtibar Dzhafarov and published by World Scientific. This book was released on 2015-11-30 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book explores the variety of meanings of contextuality across different disciplines, with the emphasis on quantum physics and on psychology."--

Book Foundations of Quantum Theory

Download or read book Foundations of Quantum Theory written by E.M. Rasel and published by IOS Press. This book was released on 2019-01-23 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a summary of the lectures presented at the International School of Physics "Enrico Fermi" on the Foundations of Quantum Theory, organized by the Italian Physical Society in Varenna, Italy from 8-13 July 2016, in collaboration with the Wilhelm und Else Heraeus-Stiftung. It was the first "Enrico Fermi" Summer School on this topic since 1977. Its main goal was to provide an overview of the recent theoretical and experimental developments in an active field of research, the foundations of quantum mechanics. The field is characterized by a dichotomy of unparalleled agreement between theory and experiment on the one hand, and an enormous variety of interpretations of the underlying mathematical formalism on the other hand. This proceedings of the "Enrico Fermi" Summer School of July 2016 contains 21 contributions on a range of topics: the history and interpretations of quantum theory; the principle of complementarity and wave-particle duality; quantum theory from first principles; the reality of the wave function; the concept of the photon; measurement in quantum theory; the interface of quantum theory and general relativity; and quantum optical tests of quantum theory.

Book Exploring Quantum Contextuality with Photons

Download or read book Exploring Quantum Contextuality with Photons written by Zheng-Hao Liu and published by Springer Nature. This book was released on with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Quantum Graphs

Download or read book Introduction to Quantum Graphs written by Gregory Berkolaiko and published by American Mathematical Soc.. This book was released on 2013 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.

Book Graph Theory  Adiabatic Quantum Computing Methods

Download or read book Graph Theory Adiabatic Quantum Computing Methods written by N.B. Singh and published by N.B. Singh. This book was released on with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Graph Theory: Adiabatic Quantum Computing Methods" explores the convergence of quantum computing and graph theory, offering a comprehensive examination of how quantum algorithms can tackle fundamental graph problems. From foundational concepts to advanced applications in fields like cryptography, machine learning, and network analysis, this book provides a clear pathway into the evolving landscape of quantum-enhanced graph algorithms. Designed for researchers, students, and professionals alike, it bridges theoretical insights with practical implementations, paving the way for innovative solutions in computational graph theory.

Book Characterizing and Witnessing Multipartite Correlations   from Nonlocality to Contextuality

Download or read book Characterizing and Witnessing Multipartite Correlations from Nonlocality to Contextuality written by Ana Belén Sainz and published by . This book was released on 2014 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past century, experimental discoveries have witnessed phenomena in Nature which challenge our everyday classical intuition. In order to explain these facts, quantum theory was developed, which so far has been able to reproduce the observed results. However, I believe that our understanding of quantum mechanics can be significantly improved by the search for an operational meaning behind its mathematical formulation, which would help to identify the limitations and possibilities of the theory for information processing. An intriguing property of quantum theory is its intrinsic randomness. Indeed, Einstein, Podolsky and Rosen in 1935 questioned the completeness of quantum theory. They argued the possibility of the existence of a complete theory where variables to which we have not access determine the behaviour of physical systems, and the randomness observed in quantum mechanics is then due to our ignorance of these variables. These hidden variables theories, however, were proved not to be enough for explaining the predictions of quantum theory, as shown in the no-go theorems by Bell on quantum-nonlocality and by Kochen and Specker on quantum-contextuality. In the past decades, many experiments have corroborated the nonlocal and contextual character of Nature. However, no intuition behind these phenomena has been found, in particular about what limits their strength. In fact, special relativity alone would allow for phenomena which are more nonlocal than what quantum theory allows. Hence, much effort has been devoted to find the physical properties of quantum theory that restricts these phenomena. In this thesis, we study the constraints that arise on nonlocal and contextual phenomena when a certain exclusiveness structure compatible with quantum theory is imposed in the space of events. Here, an event denotes the situation where an outcome is obtained given that a measurement is performed on the physical system. Regarding nonlocality, we introduce a notion of orthogonality that states that events involving different outcomes of the same local measurement are exclusive, and construct constraints that the correlations among observers should satisfy. We denote this by Local Orthogonality principle (LO), which is the first intrinsically multipartite principle for bounding quantum correlations. We prove that LO identifies the supra-quantum character of some bipartite and multipartite correlations, and gets close to the quantum boundary. When studying contextuality, the same abstract event may correspond to outcomes of different measurements, which introduces a non-trivial structure in the space of events. For its study, we develop a general formalism for contextuality scenarios in the spirit of the recent approach by Cabello, Severini and Winter. In our framework, nonlocality arises as a particular case of contextuality, which allows us to study a generalization of LO. Both in nonlocality and contextuality, we find close connections to problems in combinatorics and hence use graph-theoretical tools for studying correlations. Finally, this thesis also studies the detection of nonlocal correlations. Most results on quantum nonlocality focus on few particles' experiments, while less is known about the detection of quantum nonlocality in many-body systems. Standard many-body observables involve correlations among few particles, while there is still no multipartite Bell inequality to test nonlocality merely from these data. In this thesis, we provide the first proposal for nonlocality detection in many-body systems using two-body correlations. We construct families of Bell inequalities from two-body correlators, which can detect nonlocality for systems with large number of constituents. In addition, we prove violations by systems which are relevant in nuclear and atomic physics, and show how to test these inequalities by measuring global spin components, hence opening the problem to experimental realizations.

Book Computation  Logic  Games  and Quantum Foundations   The Many Facets of Samson Abramsky

Download or read book Computation Logic Games and Quantum Foundations The Many Facets of Samson Abramsky written by Bob Coecke and published by Springer. This book was released on 2013-11-18 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift volume, published in honor of Samson Abramsky, contains contributions written by some of his colleagues, former students, and friends. In celebration of the 60th birthday of Samson Abramsky, a conference was held in Oxford, UK, during May 28-30, 2010. The papers in this volume represent his manifold contributions to semantics, logic, games, and quantum mechanics.

Book Fundamentals of Computation Theory

Download or read book Fundamentals of Computation Theory written by Ralf Klasing and published by Springer. This book was released on 2017-08-28 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 21st International Symposium on Fundamentals of Computation Theory, FCT 2017, held in Bordeaux, France, in September 2017. The 29 revised full papers and 5 invited papers presented were carefully reviewed and selected from 99 submissions. The papers cover topics of all aspects of theoretical computer science, in particular algorithms, complexity, formal and logical methods.

Book Quantum Graphs and Their Applications

Download or read book Quantum Graphs and Their Applications written by Gregory Berkolaiko and published by American Mathematical Soc.. This book was released on with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of articles dedicated to quantum graphs, a newly emerging interdisciplinary field related to various areas of mathematics and physics. The reader can find a broad overview of the theory of quantum graphs. The articles present methods coming from different areas of mathematics: number theory, combinatorics, mathematical physics, differential equations, spectral theory, global analysis, and theory of fractals. They also address various important applications, such as Anderson localization, electrical networks, quantum chaos, mesoscopic physics, superconductivity, optics, and biological modeling.

Book Quantum  Probability  Logic

Download or read book Quantum Probability Logic written by Meir Hemmo and published by Springer Nature. This book was released on 2020-04-07 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a broad perspective on the state of the art in the philosophy and conceptual foundations of quantum mechanics. Its essays take their starting point in the work and influence of Itamar Pitowsky, who has greatly influenced our understanding of what is characteristically non-classical about quantum probabilities and quantum logic, and this serves as a vantage point from which they reflect on key ongoing debates in the field. Readers will find a definitive and multi-faceted description of the major open questions in the foundations of quantum mechanics today, including: Is quantum mechanics a new theory of (contextual) probability? Should the quantum state be interpreted objectively or subjectively? How should probability be understood in the Everett interpretation of quantum mechanics? What are the limits of the physical implementation of computation? The impact of this volume goes beyond the exposition of Pitowsky’s influence: it provides a unique collection of essays by leading thinkers containing profound reflections on the field. Chapter 1. Classical logic, classical probability, and quantum mechanics (Samson Abramsky) Chapter 2. Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanic (Valia Allori) Chapter 3. Unscrambling Subjective and Epistemic Probabilities (Guido Bacciagaluppi) Chapter 4. Wigner’s Friend as a Rational Agent (Veronika Baumann, Časlav Brukner) Chapter 5. Pitowsky's Epistemic Interpretation of Quantum Mechanics and the PBR Theorem (Yemima Ben-Menahem) Chapter 6. On the Mathematical Constitution and Explanation of Physical Facts (Joseph Berkovitz) Chapter 7. Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle (Harvey R. Brown, Gal Ben Porath) Chapter 8. ‘Two Dogmas’ Redu (Jeffrey Bub) Chapter 9. Physical Computability Theses (B. Jack Copeland, Oron Shagrir) Chapter 10. Agents in Healey’s Pragmatist Quantum Theory: A Comparison with Pitowsky’s Approach to Quantum Mechanics (Mauro Dorato) Chapter 11. Quantum Mechanics As a Theory of Observables and States and, Thereby, As a Theory of Probability (John Earman, Laura Ruetsche) Chapter 12. The Measurement Problem and two Dogmas about Quantum Mechanic (Laura Felline) Chapter 13. There Is More Than One Way to Skin a Cat: Quantum Information Principles In a Finite World(Amit Hagar) Chapter 14. Is Quantum Mechanics a New Theory of Probability? (Richard Healey) Chapter 15. Quantum Mechanics as a Theory of Probability (Meir Hemmo, Orly Shenker) Chapter 16. On the Three Types of Bell's Inequalities (Gábor Hofer-Szabó) Chapter 17. On the Descriptive Power of Probability Logic (Ehud Hrushovski) Chapter 18. The Argument against Quantum Computers (Gil Kalai) Chapter 19. Why a Relativistic Quantum Mechanical World Must be Indeterministic (Avi Levy, Meir Hemmo) Chapter 20. Subjectivists about Quantum Probabilities Should be Realists about Quantum States (Wayne C. Myrvold) Chapter 21. The Relativistic Einstein-Podolsky-Rosen Argument (Michael Redhead) Chapter 22. What price statistical independence? How Einstein missed the photon.(Simon Saunders) Chapter 23. How (Maximally) Contextual is Quantum Mechanics? (Andrew W. Simmons) Chapter 24. Roots and (Re)Sources of Value (In)Definiteness Versus Contextuality (Karl Svozil) Chapter 25: Schrödinger’s Reaction to the EPR Paper (Jos Uffink) Chapter 26. Derivations of the Born Rule (Lev Vaidman) Chapter 27. Dynamical States and the Conventionality of (Non-) Classicality (Alexander Wilce).

Book Samson Abramsky on Logic and Structure in Computer Science and Beyond

Download or read book Samson Abramsky on Logic and Structure in Computer Science and Beyond written by Alessandra Palmigiano and published by Springer Nature. This book was released on 2023-09-02 with total page 1149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Samson Abramsky’s wide-ranging contributions to logical and structural aspects of Computer Science have had a major influence on the field. This book is a rich collection of papers, inspired by and extending Abramsky’s work. It contains both survey material and new results, organised around six major themes: domains and duality, game semantics, contextuality and quantum computation, comonads and descriptive complexity, categorical and logical semantics, and probabilistic computation. These relate to different stages and aspects of Abramsky’s work, reflecting its exceptionally broad scope and his ability to illuminate and unify diverse topics. Chapters in the volume include a review of his entire body of work, spanning from philosophical aspects to logic, programming language theory, quantum theory, economics and psychology, and relating it to a theory of unification of sciences using dual adjunctions. The section on game semantics shows how Abramsky’s work has led to a powerful new paradigm for the semantics of computation. The work on contextuality and categorical quantum mechanics has been highly influential, and provides the foundation for increasingly widely used methods in quantum computing. The work on comonads and descriptive complexity is building bridges between currently disjoint research areas in computer science, relating Structure to Power. The volume also includes a scientific autobiography, and an overview of the contributions. The outstanding set of contributors to this volume, including both senior and early career academics, serve as testament to Samson Abramsky’s enduring influence. It will provide an invaluable and unique resource for both students and established researchers.

Book On Quanta  Mind and Matter

    Book Details:
  • Author : Harald Atmanspacher
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9401145814
  • Pages : 394 pages

Download or read book On Quanta Mind and Matter written by Harald Atmanspacher and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: INSTEAD OF A "FESTSCHRIFT" In June 1998 Hans Primas turned 70 years old. Although he himself is not fond of jubilees and although he likes to play the decimal system of numbers down as contingent, this is nevertheless a suitable occasion to reflect on the professional work of one of the rare distinguished contempo rary scientists who attach equal importance to experimental and theoretical and conceptual lines of research. Hans Primas' interests have covered an enormous range: methods and instruments for nuclear magnetic resonance, theoretical chemistry, C* - and W* -algebraic formulations of quantum me chanics, the measurement problem and its various implications, holism and realism in quantum theory, theory reduction, the work and personality of Wolfgang Pauli, as well as Jungian psychology. In many of these fields he provided important and original food for thought, in some cases going far beyond the everyday business in the scien tific world. As is the case with other scientists who are conceptually inno vative, Hans Primas is read more than he is quoted. His influence is due to his writings. Even with the current flood of publications, he still performs the miracle of having scientists eagerly awaiting his next publication.

Book From Electrons to Elephants and Elections

Download or read book From Electrons to Elephants and Elections written by Shyam Wuppuluri and published by Springer Nature. This book was released on 2022-04-08 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly interdisciplinary book, covering more than six fields, from philosophy and sciences all the way up to the humanities and with contributions from eminent authors, addresses the interplay between content and context, reductionism and holism and their meeting point: the notion of emergence. Much of today’s science is reductionist (bottom-up); in other words, behaviour on one level is explained by reducing it to components on a lower level. Chemistry is reduced to atoms, ecosystems are explained in terms of DNA and proteins, etc. This approach fails quickly since we can’t cannot extrapolate to the properties of atoms solely from Schrödinger's equation, nor figure out protein folding from an amino acid sequence or obtain the phenotype of an organism from its genotype. An alternative approach to this is holism (top-down). Consider an ecosystem or an organism as a whole: seek patterns on the same scale. Model a galaxy not as 400 billion-point masses (stars) but as an object in its own right with its own properties (spiral, elliptic). Or a hurricane as a structured form of moist air and water vapour. Reductionism is largely about content, whereas holistic models are more attuned to context. Reductionism (content) and holism (context) are not opposing philosophies — in fact, they work best in tandem. Join us on a journey to understand the multifaceted dialectic concerning this duo and how they shape the foundations of sciences and humanities, our thoughts and, the very nature of reality itself.

Book Discrete Causal Theory

    Book Details:
  • Author : Benjamin F. Dribus
  • Publisher : Springer
  • Release : 2017-04-26
  • ISBN : 331950083X
  • Pages : 577 pages

Download or read book Discrete Causal Theory written by Benjamin F. Dribus and published by Springer. This book was released on 2017-04-26 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.

Book Quantum Information and Foundations

Download or read book Quantum Information and Foundations written by Giacomo Mauro D’Ariano and published by MDPI. This book was released on 2020-03-23 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum information has dramatically changed information science and technology, looking at the quantum nature of the information carrier as a resource for building new information protocols, designing radically new communication and computation algorithms, and ultra-sensitive measurements in metrology, with a wealth of applications. From a fundamental perspective, this new discipline has led us to regard quantum theory itself as a special theory of information, and has opened routes for exploring solutions to the tension with general relativity, based, for example, on the holographic principle, on non-causal variations of the theory, or else on the powerful algorithm of the quantum cellular automaton, which has revealed new routes for exploring quantum fields theory, both as a new microscopic mechanism on the fundamental side, and as a tool for efficient physical quantum simulations for practical purposes. In this golden age of foundations, an astonishing number of new ideas, frameworks, and results, spawned by the quantum information theory experience, have revolutionized the way we think about the subject, with a new research community emerging worldwide, including scientists from computer science and mathematics.