Download or read book Quadratic Forms in Random Variables written by A.M. Mathai and published by CRC Press. This book was released on 1992-02-24 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Textbook for a one-semester graduate course for students specializing in mathematical statistics or in multivariate analysis, or reference for theoretical as well as applied statisticians, confines its discussion to quadratic forms and second degree polynomials in real normal random vectors and matr
Download or read book Probability Distributions Involving Gaussian Random Variables written by Marvin K. Simon and published by Springer Science & Business Media. This book was released on 2007-05-24 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook, now available in paperback, brings together a comprehensive collection of mathematical material in one location. It also offers a variety of new results interpreted in a form that is particularly useful to engineers, scientists, and applied mathematicians. The handbook is not specific to fixed research areas, but rather it has a generic flavor that can be applied by anyone working with probabilistic and stochastic analysis and modeling. Classic results are presented in their final form without derivation or discussion, allowing for much material to be condensed into one volume.
Download or read book Linear Models and Time Series Analysis written by Marc S. Paolella and published by John Wiley & Sons. This book was released on 2018-12-17 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.
Download or read book Lectures on Probability Theory and Mathematical Statistics 3rd Edition written by Marco Taboga and published by Createspace Independent Publishing Platform. This book was released on 2017-12-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.
Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Download or read book The Normal Distribution written by Wlodzimierz Bryc and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a concise presentation of the normal distribution on the real line and its counterparts on more abstract spaces, which we shall call the Gaussian distributions. The material is selected towards presenting characteristic properties, or characterizations, of the normal distribution. There are many such properties and there are numerous rel evant works in the literature. In this book special attention is given to characterizations generated by the so called Maxwell's Theorem of statistical mechanics, which is stated in the introduction as Theorem 0.0.1. These characterizations are of interest both intrin sically, and as techniques that are worth being aware of. The book may also serve as a good introduction to diverse analytic methods of probability theory. We use characteristic functions, tail estimates, and occasionally dive into complex analysis. In the book we also show how the characteristic properties can be used to prove important results about the Gaussian processes and the abstract Gaussian vectors. For instance, in Section 5.4 we present Fernique's beautiful proofs of the zero-one law and of the integrability of abstract Gaussian vectors. The central limit theorem is obtained via characterizations in Section 7.3.
Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Download or read book The Multivariate Normal Distribution written by Y.L. Tong and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multivariate normal distribution has played a predominant role in the historical development of statistical theory, and has made its appearance in various areas of applications. Although many of the results concerning the multivariate normal distribution are classical, there are important new results which have been reported recently in the literature but cannot be found in most books on multivariate analysis. These results are often obtained by showing that the multivariate normal density function belongs to certain large families of density functions. Thus, useful properties of such families immedi ately hold for the multivariate normal distribution. This book attempts to provide a comprehensive and coherent treatment of the classical and new results related to the multivariate normal distribution. The material is organized in a unified modern approach, and the main themes are dependence, probability inequalities, and their roles in theory and applica tions. Some general properties of a multivariate normal density function are discussed, and results that follow from these properties are reviewed exten sively. The coverage is, to some extent, a matter of taste and is not intended to be exhaustive, thus more attention is focused on a systematic presentation of results rather than on a complete listing of them.
Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Download or read book Multivariate Normal Distribution The Theory And Applications written by Thu Pham-gia and published by World Scientific. This book was released on 2021-05-05 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with user-friendly applications of normal distribution. In several variables it is called the multinormal distribution which is often handled using matrices for convenience. The author seeks to make the arguments less abstract and hence, starts with the univariate case and moves progressively toward the vector and matrix cases. The approach used in the book is a gradual one, going from one scalar variable to a vector variable and to a matrix variable. The author presents the unified aspect of normal distribution, as well as addresses several other issues, including random matrix theory in physics. Other well-known applications, such as Herrnstein and Murray's argument that human intelligence is substantially influenced by both inherited and environmental factors, will be discussed in this book. It is a better predictor of many personal dynamics — including financial income, job performance, birth out of wedlock, and involvement in crime — than are an individual's parental socioeconomic status, or education level, and deserve to be mentioned and discussed.
Download or read book Normal and Student s t Distributions and Their Applications written by Mohammad Ahsanullah and published by Springer Science & Business Media. This book was released on 2014-02-07 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most important properties of normal and Student t-distributions are presented. A number of applications of these properties are demonstrated. New related results dealing with the distributions of the sum, product and ratio of the independent normal and Student distributions are presented. The materials will be useful to the advanced undergraduate and graduate students and practitioners in the various fields of science and engineering.
Download or read book Introduction to Mathematical Statistics written by L. Schmetterer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: To Mathematical Statistics Translated from the German by Kenneth Wickwire Springer-Verlag Berlin Heidelberg New York 1974 Leopold Schmetterer Professor of Statistics and Mathematics at the University of Vienna Translator: Kenneth Wickwire Department of Mathematics, University of Manchester Title of the German Original Edition: Einfiihrung in die mathematische Statistik, 2. verbesserte und wesentlich erweiterte Auflage Springer-Verlag Wien New York 1966 With 11 figures AMS Subject Classification (1970): 62-01, 62 Axx, 62 Bxx, 62 Cxx, 62D03, 62 Exx, 62 Fxx, 62 Gxx, 62 Hxx ISBN-13: 978-3-642-65544-9 e-ISBN-13: 978-3-642-65542-5 DOl: 10. 1007/978-3-642-65542-5 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under {sect}54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin· Heidelberg 1974. Library of Congress Catalog Card Number 73-15290. Softcover reprint of the hardcover 1 st edition 1974 Bookbinding: Konrad Triltsch, Wiirzburg. Preface I have used the opportunity of the second edition of the German version being translated into English to alter and improve some details. Of course I tried to correct misprints and errata of the original version. Moreover some proofs have been slightly changed and I hope thereby improved.
Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Regularly Varying Functions written by E. Seneta and published by Springer. This book was released on 2006-11-14 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book On Distribution of Quadratic Forms in Gaussian Random Variables written by Gerd Christoph and published by . This book was released on 1995 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Dynamical Approach to Random Matrix Theory written by László Erdős and published by American Mathematical Soc.. This book was released on 2017-08-30 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Download or read book An Introduction to Matrix Concentration Inequalities written by Joel Tropp and published by . This book was released on 2015-05-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.