Download or read book The Lebesgue Stieltjes Integral written by M. Carter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: While mathematics students generally meet the Riemann integral early in their undergraduate studies, those whose interests lie more in the direction of applied mathematics will probably find themselves needing to use the Lebesgue or Lebesgue-Stieltjes Integral before they have acquired the necessary theoretical background. This book is aimed at exactly this group of readers. The authors introduce the Lebesgue-Stieltjes integral on the real line as a natural extension of the Riemann integral, making the treatment as practical as possible. They discuss the evaluation of Lebesgue-Stieltjes integrals in detail, as well as the standard convergence theorems, and conclude with a brief discussion of multivariate integrals and surveys of L spaces plus some applications. The whole is rounded off with exercises that extend and illustrate the theory, as well as providing practice in the techniques.
Download or read book A Garden of Integrals written by Frank Burk and published by MAA. This book was released on 2007-08-30 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The derivative and the integral are the fundamental notions of calculus. Though there is essentially only one derivative, there is a variety of integrals, developed over the years for a variety of purposes, and this book describes them. No other single source treats all of the integrals of Cauchy, Riemann, Riemann-Stieltjes, Lebesgue, Lebesgue-Steiltjes, Henstock-Kurzweil, Weiner, and Feynman. The basic properties of each are proved, their similarities and differences are pointed out, and the reasons for their existence and their uses are given, with plentiful historical information. The audience for the book is advanced undergraduate mathematics students, graduate students, and faculty members, of which even the most experienced are unlikely to be aware of all of the integrals in the Garden of Integrals. Professor Burk's clear and well-motivated exposition makes this book a joy to read. There is no other book like it.
Download or read book Kurzweil stieltjes Integral Theory And Applications written by Giselle Antunes Monteiro and published by World Scientific. This book was released on 2018-09-26 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is primarily devoted to the Kurzweil-Stieltjes integral and its applications in functional analysis, theory of distributions, generalized elementary functions, as well as various kinds of generalized differential equations, including dynamic equations on time scales. It continues the research that was paved out by some of the previous volumes in the Series in Real Analysis. Moreover, it presents results in a thoroughly updated form and, simultaneously, it is written in a widely understandable way, so that it can be used as a textbook for advanced university or PhD courses covering the theory of integration or differential equations.
Download or read book A First Course in Real Analysis written by M.H. Protter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chapters contain more than enough analysis for a one year course, the instructor teaching a one or two quarter or a one semester junior level course should easily find those topics which he or she thinks students should have. The first Chapter, on the real number system, serves two purposes. Because most students entering this course have had no experience in devising proofs of theorems, it provides an opportunity to develop facility in theorem proving. Although the elementary processes of numbers are familiar to most students, greater understanding of these processes is acquired by those who work the problems in Chapter 1. As a second purpose, we provide, for those instructors who wish to give a comprehen sive course in analysis, a fairly complete treatment of the real number system including a section on mathematical induction.
Download or read book Riemann Stieltjes Integral Inequalities for Complex Functions Defined on Unit Circle written by Silvestru Sever Dragomir and published by CRC Press. This book was released on 2019-08-19 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of this book is to present several results related to functions of unitary operators on complex Hilbert spaces obtained, by the author in a sequence of recent research papers. The fundamental tools to obtain these results are provided by some new Riemann-Stieltjes integral inequalities of continuous integrands on the complex unit circle and integrators of bounded variation. Features All the results presented are completely proved and the original references where they have been firstly obtained are mentioned Intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, as well as by postgraduate students and scientists applying inequalities in their specific areas Provides new emphasis to mathematical inequalities, approximation theory and numerical analysis in a simple, friendly and well-digested manner. About the Author Silvestru Sever Dragomir is Professor and Chair of Mathematical Inequalities at the College of Engineering & Science, Victoria University, Melbourne, Australia. He is the author of many research papers and several books on Mathematical Inequalities and their Applications. He also chairs the international Research Group in Mathematical Inequalities and Applications (RGMIA). For details, see https://rgmia.org/index.php.
Download or read book Real Analysis written by N. L. Carothers and published by Cambridge University Press. This book was released on 2000-08-15 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.
Download or read book Integral Measure and Derivative written by G. E. Shilov and published by Courier Corporation. This book was released on 2013-05-13 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment examines the general theory of the integral, Lebesque integral in n-space, the Riemann-Stieltjes integral, and more. "The exposition is fresh and sophisticated, and will engage the interest of accomplished mathematicians." — Sci-Tech Book News. 1966 edition.
Download or read book Counting Processes and Survival Analysis written by Thomas R. Fleming and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "The book is a valuable completion of the literature in this field. It is written in an ambitious mathematical style and can be recommended to statisticians as well as biostatisticians." -Biometrische Zeitschrift "Not many books manage to combine convincingly topics from probability theory over mathematical statistics to applied statistics. This is one of them. The book has other strong points to recommend it: it is written with meticulous care, in a lucid style, general results being illustrated by examples from statistical theory and practice, and a bunch of exercises serve to further elucidate and elaborate on the text." -Mathematical Reviews "This book gives a thorough introduction to martingale and counting process methods in survival analysis thereby filling a gap in the literature." -Zentralblatt für Mathematik und ihre Grenzgebiete/Mathematics Abstracts "The authors have performed a valuable service to researchers in providing this material in [a] self-contained and accessible form. . . This text [is] essential reading for the probabilist or mathematical statistician working in the area of survival analysis." -Short Book Reviews, International Statistical Institute Counting Processes and Survival Analysis explores the martingale approach to the statistical analysis of counting processes, with an emphasis on the application of those methods to censored failure time data. This approach has proven remarkably successful in yielding results about statistical methods for many problems arising in censored data. A thorough treatment of the calculus of martingales as well as the most important applications of these methods to censored data is offered. Additionally, the book examines classical problems in asymptotic distribution theory for counting process methods and newer methods for graphical analysis and diagnostics of censored data. Exercises are included to provide practice in applying martingale methods and insight into the calculus itself.
Download or read book A Modern Theory of Integration written by Robert G. Bartle and published by American Mathematical Soc.. This book was released on 2001-03-21 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of integration is one of the twin pillars on which analysis is built. The first version of integration that students see is the Riemann integral. Later, graduate students learn that the Lebesgue integral is ``better'' because it removes some restrictions on the integrands and the domains over which we integrate. However, there are still drawbacks to Lebesgue integration, for instance, dealing with the Fundamental Theorem of Calculus, or with ``improper'' integrals. This book is an introduction to a relatively new theory of the integral (called the ``generalized Riemann integral'' or the ``Henstock-Kurzweil integral'') that corrects the defects in the classical Riemann theory and both simplifies and extends the Lebesgue theory of integration. Although this integral includes that of Lebesgue, its definition is very close to the Riemann integral that is familiar to students from calculus. One virtue of the new approach is that no measure theory and virtually no topology is required. Indeed, the book includes a study of measure theory as an application of the integral. Part 1 fully develops the theory of the integral of functions defined on a compact interval. This restriction on the domain is not necessary, but it is the case of most interest and does not exhibit some of the technical problems that can impede the reader's understanding. Part 2 shows how this theory extends to functions defined on the whole real line. The theory of Lebesgue measure from the integral is then developed, and the author makes a connection with some of the traditional approaches to the Lebesgue integral. Thus, readers are given full exposure to the main classical results. The text is suitable for a first-year graduate course, although much of it can be readily mastered by advanced undergraduate students. Included are many examples and a very rich collection of exercises. There are partial solutions to approximately one-third of the exercises. A complete solutions manual is available separately.
Download or read book Introduction to Analysis written by Maxwell Rosenlicht and published by Courier Corporation. This book was released on 2012-05-04 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.
Download or read book Theory of the Integral written by Stanislaw Saks and published by Franklin Classics. This book was released on 2018-10-15 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Download or read book The Generalized Riemann Integral written by Robert M. McLeod and published by American Mathematical Soc.. This book was released on 1980-12-31 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Generalized Riemann Integral is addressed to persons who already have an acquaintance with integrals they wish to extend and to the teachers of generations of students to come. The organization of the work will make it possible for the first group to extract the principal results without struggling through technical details which they may find formidable or extraneous to their purposes. The technical level starts low at the opening of each chapter. Thus, readers may follow each chapter as far as they wish and then skip to the beginning of the next. To readers who do wish to see all the details of the arguments, they are given. The generalized Riemann integral can be used to bring the full power of the integral within the reach of many who, up to now, haven't gotten a glimpse of such results as monotone and dominated convergence theorems. As its name hints, the generalized Riemann integral is defined in terms of Riemann sums. The path from the definition to theorems exhibiting the full power of the integral is direct and short.
Download or read book Measure and Integral written by Richard Wheeden and published by CRC Press. This book was released on 1977-11-01 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
Download or read book The Lebesgue Integral written by Open University. M431 Course Team and published by . This book was released on 1992 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Gauge Integrals written by Charles Swartz and published by World Scientific. This book was released on 2001 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc. Contents: Introduction to the Gauge or Henstock-Kurzweil Integral; Basic Properties of the Gauge Integral; Henstock''s Lemma and Improper Integrals; The Gauge Integral over Unbounded Intervals; Convergence Theorems; Integration over More General Sets: Lebesgue Measure; The Space of Gauge Integrable Functions; Multiple Integrals and Fubini''s Theorem; The McShane Integral; McShane Integrability is Equivalent to Absolute Henstock-Kurzweil Integrability. Readership: Upper level undergraduates and mathematicians interested in gauge integrals.
Download or read book A Modern Approach to Probability Theory written by Bert E. Fristedt and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.
Download or read book Elementary Analysis written by Kenneth A. Ross and published by CUP Archive. This book was released on 2014-01-15 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: