EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Oil Recovery from Naturally Fractured Reservoirs by Steam Injection Methods

Download or read book Oil Recovery from Naturally Fractured Reservoirs by Steam Injection Methods written by and published by . This book was released on 1991 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this study is to develop accurate models for predicting oil recovery in naturally fractured reservoirs by steam injection. This objective is being met through an integrated experimental, numerical, and analytical study of the recovery mechanisms that control oil recovery for this process. These mechanisms include capillary imbibition, thermal expansion, gas generation from chemical reactions, and temperature-dependent thermal properties.

Book An Artificial Neural Network Approach for Evaluating the Performance of Cyclic Steam Injection in Naturally Fractured Heavy Oil Reservoirs

Download or read book An Artificial Neural Network Approach for Evaluating the Performance of Cyclic Steam Injection in Naturally Fractured Heavy Oil Reservoirs written by Ahmet Ersahin and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to a sharp fall in oil prices in late 2014, many oil exploration companies have either stopped operations or postponed projects to a future date. The resulting slowdown has strengthened the dependency on existing developed fields for oil production. This is a cause of concern for major oil corporations and governments worldwide, as the dependence on mature fields suggests that conventional oil extraction techniques may not be enough to maintain current demand and may lead to significant profit losses. Thus, the development of enhanced oil recovery (EOR) (also known as tertiary recovery) methods to improve recovery from developed fields has attracted attention.Thermal recovery, a widely used EOR method in heavy oil reservoirs, involves the introduction of heat into the formation to reduce the viscosity of the oil in the reservoir. Cyclic steam stimulation (CSS) is an effective thermal process used with naturally fractured reservoirs. The cyclic steam injection (CSI) method incorporates the stages of injecting, soaking and production one by one in a single well.The use of a commercial simulator for estimating production is common. However, the process can be time consuming and complex. Alternatively, it is possible to achieve results within seconds using an adequately trained artificial neural network (ANN).This study analyzes CSI performance based on its effectiveness with respect to viscosity contours and cumulative oil production. Naturally fractured reservoirs are excellent targets for steam injection because they possess a structure where steam can easily diffuse.

Book Projects Investigating Oil Recovery from Naturally Fractured Reservoirs

Download or read book Projects Investigating Oil Recovery from Naturally Fractured Reservoirs written by United States. National Petroleum Technology Office and published by . This book was released on 1999 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs

Download or read book Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs written by Alireza Bahadori and published by Gulf Professional Publishing. This book was released on 2018-08-18 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs delivers the proper foundation on all types of currently utilized and upcoming enhanced oil recovery, including methods used in emerging unconventional reservoirs. Going beyond traditional secondary methods, this reference includes advanced water-based EOR methods which are becoming more popular due to CO2 injection methods used in EOR and methods specific to target shale oil and gas activity. Rounding out with a chapter devoted to optimizing the application and economy of EOR methods, the book brings reservoir and petroleum engineers up-to-speed on the latest studies to apply. Enhanced oil recovery continues to grow in technology, and with ongoing unconventional reservoir activity underway, enhanced oil recovery methods of many kinds will continue to gain in studies and scientific advancements. Reservoir engineers currently have multiple outlets to gain knowledge and are in need of one product go-to reference. Explains enhanced oil recovery methods, focusing specifically on those used for unconventional reservoirs Includes real-world case studies and examples to further illustrate points Creates a practical and theoretical foundation with multiple contributors from various backgrounds Includes a full range of the latest and future methods for enhanced oil recovery, including chemical, waterflooding, CO2 injection and thermal

Book Enhanced Oil Recovery

    Book Details:
  • Author : Marcel Latil
  • Publisher : Editions TECHNIP
  • Release : 1980
  • ISBN : 9782710810506
  • Pages : 258 pages

Download or read book Enhanced Oil Recovery written by Marcel Latil and published by Editions TECHNIP. This book was released on 1980 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents : 1. Factors common to all enhanced recovery methods. 2. Water injection. 3. Gas injection in an oil reservoir (immiscible displacement). 4. Miscible drive. 5. Gas recycling in gas-condensate reservoirs. 6. Thermal recovery methods. 7. Other methods of enhanced recovery. References. Index.

Book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs

Download or read book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs written by Xiaohu Dong and published by Elsevier. This book was released on 2021-10-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs, Volume 73 systematically introduces these technologies. As the development of heavy oil reservoirs is emphasized, the petroleum industry is faced with the challenges of selecting cost-effective and environmentally friendly recovery processes. This book tackles these challenges with the introduction and investigation of a variety of hybrid EOR processes. In addition, it addresses the application of these hybrid EOR processes in onshore and offshore heavy oil reservoirs, including theoretical, experimental and simulation approaches. This book will be very useful for petroleum engineers, technicians, academics and students who need to study the hybrid EOR processes, In addition, it will provide an excellent reference for field operations by the petroleum industry. Introduces emerging hybrid EOR processes and their technical details Includes case studies to help readers understand the application potential of hybrid EOR processes from different points-of-view Features theoretical, experimental and simulation studies to help readers understand the advantages and challenges of each process

Book An Investigation Into the Mechanisms Controlling Oil Recovery by Thermally Assisted Gas oil Gravity Drainage

Download or read book An Investigation Into the Mechanisms Controlling Oil Recovery by Thermally Assisted Gas oil Gravity Drainage written by Abdul Sallam Omar Khamis Al Raba'ani and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy oil contained in naturally fractured reservoirs is becoming an important resource as conventional oil reserves are depleted. However, maximizing recovery from such reservoirs is problematic due to the low flow rate of oil and the poor understanding of recovery mechanisms. One EOR method that is of particular interest is Thermally Assisted Gas-Oil Gravity Drainage (TA-GOGD). In this process, steam is injected into the reservoir. This heats the rock matrix blocks through the higher penneability fracture network and improves oil recovery principally by reducing the oil viscosity and thus increasing the rate of gravity drainage through the matrix. The work presented in this thesis aims to investigate and understand the mechanisms controlling the rate of gravity drainage during TA-GOGD and determine the key reservoir parameters that control recovery. This was achieved by studying the time scales for heating the matrix blocks by steam and gas oil gravity drainage as a function of reservoir and fluid properties using analytical formulae and detailed reservoir simulations. During the heating investigation, a simple formula for calculating the critical steam rate in the fractures is derived analytically. The formula shows that there is a critical steam injection rate for TA-GOGD in fractured reservoirs. If the injection rate is below this critical rate, the time to heat the matrix will increase and oil recovery increases with increasing injection rate. If the steam injection rate is greater than the critical rate then there is no significant increase in oil recovery with rate. The oil recovery mechanisms of TA -GOGD were also investigated numerically. The study involved the investigations of individual and collective impacts of the mechanisms of solution gas drive, C02 generation, steam distillation, connate water evaporation and gravity drainage, on the oil recovery for reservoir containing heavy oil using real field data and parameters. It was found that CO2 generation, water imbibition and oil expansion contribute more to oil recovery in the early times of oil production whereas distillation, thermal gas drive, viscosity reduction and gravity drainage mechanisms contribute more in the late times.

Book Modification of Reservoir Chemical and Physical Factors in Steamfloods to Increase Heavy Oil Recovery

Download or read book Modification of Reservoir Chemical and Physical Factors in Steamfloods to Increase Heavy Oil Recovery written by and published by . This book was released on 1996 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this quarter work continued on: development of relative permeabilities during steam injection; optimization of recovery processes in heterogeneous reservoirs by using optimal control methods; and behavior of non-Newtonian fluid flow and on foam displacements in porous media.

Book Heavy Oil bitumen Recovery by Alternate Injection of Steam and Solvent  hydrocarbon and CO subscript 2  in Fractured Carbonates and Oilsands

Download or read book Heavy Oil bitumen Recovery by Alternate Injection of Steam and Solvent hydrocarbon and CO subscript 2 in Fractured Carbonates and Oilsands written by Khosrow Naderi and published by . This book was released on 2013 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world energy demand is constantly increasing and fossil fuels are still by far the main energy resource that supplies the world energy consumption market, therefore increasing oil recovery from all types of reservoirs is an important matter. The burning of fossil fuels for energy purposes, on the other hand, emerges another issue: the accumulation of greenhouse gases into the atmosphere which is considered to be the primary cause of climate change. CO[subscript 2] sequestration is a way of mitigating this greenhouse gas from the environment and storing it in underground reservoirs. Naturally fractured reservoirs may be worthy locations for CO[subscript 2] storage and if a suitable method of injection is applied, both oil recovery and CO[subscript 2] sequestration goals can be met simultaneously. Steam-Over-Solvent Injection in Fractured Reservoirs (SOS-FR) is a recently proposed method for heavy oil recovery from fractured reservoirs. This method normally consists of three phases: Phase-I, initial thermal phase that produces oil by thermal expansion and viscosity reduction; Phase-II, solvent phase to dilute and drain oil and; Phase-III, final thermal phase for additional oil recovery and solvent retrieval. This dissertation extends and modifies the SOS-FR method to employ CO[subscript 2] as solvent through extensive experimental and numerical analyses. The experiments were conducted under various pressure and temperature conditions on different porous media including preserved oilsand ores, unconsolidated sandpacks, sandstone, and carbonate cores. While CO[subscript 2] was of central interest, different solvent types were investigated to form a range of comparisons. Solvents were examined in both liquid and gas forms. Temperature was changed for thermal stages to consider hot water, low temperature steam, and high temperature steam. Pressure was also changed in solvent stage. Oil, gas, and porous medium analysis were performed to see the effects of SOS-FR on fluid and matrix properties, as well. Numerical analysis was also done for history matching of experimental data and field scale application of this method to see the results of various injection schemes on both oil recovery and CO[subscript 2] sequestration in larger scales. This work presents the applicability of carbon dioxide as solvent in the SOS-FR method which gives acceptable oil recoveries while reducing the costs of solvent and steam with an additional value of CO[subscript 2] storage in naturally fractured reservoirs or post-CHOPS oilsands applications. It is shown that the method is viable and effective for a wide range of applications from unconsolidated sands to fractured carbonates containing heavy-oil and bitumen through vigilant selection of steam-solvent injection strategy ad solvent type under general SOS-FR concept.

Book Steamflood Reservoir Management

Download or read book Steamflood Reservoir Management written by K. C. Hong and published by Pennwell Books. This book was released on 1994 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Methods of Oil Recovery

Download or read book Thermal Methods of Oil Recovery written by Jacques Burger and published by Butterworth-Heinemann. This book was released on 1985 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Enhanced Oil Recovery

Download or read book Fundamentals of Enhanced Oil Recovery written by H.K. Van Poollen and Associates and published by . This book was released on 1980 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Basic Concepts in Enhanced Oil Recovery Processes

Download or read book Basic Concepts in Enhanced Oil Recovery Processes written by M. Baviere and published by Springer. This book was released on 1991-09-30 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lab to Field Scale Modeling of Low Temperature Air Injection with Hydrocarbon Solvents for Heavy oil Recovery in Naturally Fractured Reservoirs

Download or read book Lab to Field Scale Modeling of Low Temperature Air Injection with Hydrocarbon Solvents for Heavy oil Recovery in Naturally Fractured Reservoirs written by Jose R. Mayorquin-Ruiz and published by . This book was released on 2015 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alternatives for enhanced oil recovery processes in heavy oil containing deep naturally fractured reservoirs (NFR) are limited due to excessive heat losses when steam is injected. Air injection at high temperature oxidation conditions (in-situ combustion) has been considered as an alternative to aqueous based thermal applications. However, its implementation has serious limitations including poor areal distribution of injected air and poor combustion efficiency due to the heterogeneous nature of these reservoirs as well as the safety risk of unconsumed injected oxygen (O2) reaching the production wells. Taking advantage of the low cost and availability of air, one option is to use air at low temperature conditions (low temperature oxidation, LTO) as a pressurizing agent in NFR. Oxygenated compounds are generated at these conditions resulting in oil viscosity increase, reducing fluid mobility. In order to minimize this detrimental effect, a combination of air injection with hydrocarbon solvents can be applied. The objectives of this thesis are to evaluate air injection at LTO conditions in NFR containing heavy oil as a way to improve oil recovery, to clarify the effect of hydrocarbon solvent addition into air on oil recovery and O2 consumption, and to propose optimal conditions (temperature, air/solvent ratio) and implementation strategies for an efficient use of this suggested method. Comprehensive laboratory and numerical simulation studies were conducted to achieve these objectives. Static diffusion experiments--simulating cyclic gas injection (huff-and-puff)--were carried out by soaking heavy oil saturated cores into a reactor filled with gas representing a matrix/fracture system. Oil recovery and O2 consumption were the main parameters assessed and an extensive set of variables including rock type, temperature, fracture volume, solvent type, matrix size, gas injection sequences, and soaking times were studied. From experimental studies, the following conclusions were made: 1.Gas sequence design affects oil recovery, 2.O2 consumption in air cycles is higher after the core is soaked into butane rather than propane, 3.It is beneficial to soak cores in air+C3 mixture rather than pure air or solvent; i.e., lower O2 concentration in produced gas, less solvent usage, higher and faster oil recovery compared to alternate injection of air and C3. Then, core scale numerical simulation models were created for modeling lab experiments for a sensitivity analysis on Air/C3 ratio and matrix size. The results show that the process is extremely sensitive to matrix size and optimization of air injection (assisted by hydrocarbon solvents) can be achieved based on the minimized hydrocarbon solvent for a given matrix size. Additionally, a sensitivity analysis was performed using an up-scaled numerical model to the field scale containing meter-scale matrix blocks. It was observed that oil production mechanisms acting in a matrix block surrounded by gas filling the fractures are predominantly gas-oil gravity drainage, effective diffusion, and voidage replacement of oil by gas. Finally, a numerical simulation sector model of a hypothetical NFR was created and several air-gas injection sequences were analyzed. It was concluded that injection of air (LTO conditions) and propane represents an alternative for heavy oil recovery from NFRs at the field scale, and an optimum production time/soaking time ratio can be obtained for given gas injection sequences (type of gas and injection/soaking durations), temperature, and block sizes.

Book Enhanced Oil Recovery

Download or read book Enhanced Oil Recovery written by M. M. Schumacher and published by William Andrew. This book was released on 1978 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: