EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical techniques for applying averaging methods to nonlinear ordinary differential equations

Download or read book Numerical techniques for applying averaging methods to nonlinear ordinary differential equations written by James Ralph Partin and published by . This book was released on 1965 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Averaging Methods in Nonlinear Dynamical Systems

Download or read book Averaging Methods in Nonlinear Dynamical Systems written by Jan A. Sanders and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.

Book Nonlinear Ordinary Differential Equations

Download or read book Nonlinear Ordinary Differential Equations written by Martin Hermann and published by Springer. This book was released on 2016-05-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Book Numerical Methods for Fluid Dynamics

Download or read book Numerical Methods for Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Book Numerical Methods for Averaging and Homogenization

Download or read book Numerical Methods for Averaging and Homogenization written by Milica Dussinger and published by . This book was released on 2020 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science and engineering are full of examples of multiscale problems, which pose severe challenges to numerical simulations. In multiscale problems, processes interact on different scales in space and time. Numerical methods, which by direct simulation fully resolves this interaction demands a tremendous amount of computational time as well as memory resources. The smallest scale should be well approximated over the full computational domain. This thesis is concerned with developing and studying numerical algorithms following the framework of the heterogeneous multiscale methods (HMM). We will focus on two numerical methods that mimic the analytical techniques of averaging and homogenization respectively. The goal is to approximate the effective or averaged solution even when the explicit analytic form may not be available. The computational challenge is to include the effects of the small scales without the cost of resolving them over the full domain. In the first part of the thesis, we focus on a class of methods for the numerical averaging of highly oscillatory ordinary differential equations. The algorithms will represent an extension to the previous work done by Tao, Owhadi and Marsden. We present analysis and apply the technique to model equations. In the second part of the thesis, we focus on methods for numerical computing the effective or homogenized form of multiscale elliptic equations. We present a procedure that reduces the effect from boundary conditions, or the so-called cell resonance error. This has been an active field of research during the last few years. We use averaging kernels that have special regularity and vanishing "negative" moment properties in order to average and thereby reduce the boundary error

Book Numerical Methods for Ordinary Differential Equations

Download or read book Numerical Methods for Ordinary Differential Equations written by J. C. Butcher and published by John Wiley & Sons. This book was released on 2016-08-29 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.

Book Numerical Solution of Ordinary Differential Equations

Download or read book Numerical Solution of Ordinary Differential Equations written by Kendall Atkinson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Book A Generalized Averaging Method for Linear Differential Equations with Almost Periodic Coefficients

Download or read book A Generalized Averaging Method for Linear Differential Equations with Almost Periodic Coefficients written by Thomas J. Coakley and published by . This book was released on 1969 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiple Time Scales

    Book Details:
  • Author : Jeremiah U. Brackbill
  • Publisher : Academic Press
  • Release : 2014-05-10
  • ISBN : 1483257568
  • Pages : 457 pages

Download or read book Multiple Time Scales written by Jeremiah U. Brackbill and published by Academic Press. This book was released on 2014-05-10 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple Time Scales presents various numerical methods for solving multiple-time-scale problems. The selection first elaborates on considerations on solving problems with multiple scales; problems with different time scales; and nonlinear normal-mode initialization of numerical weather prediction models. Discussions focus on analysis of observations, nonlinear analysis, systems of ordinary differential equations, and numerical methods for problems with multiple scales. The text then examines the diffusion-synthetic acceleration of transport iterations, with application to a radiation hydrodynamics problem and implicit methods in combustion and chemical kinetics modeling. The publication ponders on molecular dynamics and Monte Carlo simulations of rare events; direct implicit plasma simulation; orbit averaging and subcycling in particle simulation of plasmas; and hybrid and collisional implicit plasma simulation models. Topics include basic moment method, electron subcycling, gyroaveraged particle simulation, and the electromagnetic direct implicit method. The selection is a valuable reference for researchers interested in pursuing further research on the use of numerical methods in solving multiple-time-scale problems.

Book Finite Difference Methods for Ordinary and Partial Differential Equations

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Book Asymptotic Approaches in Nonlinear Dynamics

Download or read book Asymptotic Approaches in Nonlinear Dynamics written by Jan Awrejcewicz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers developments in the theory of oscillations from diverse viewpoints, reflecting the fields multidisciplinary nature. It introduces the state-of-the-art in the theory and various applications of nonlinear dynamics. It also offers the first treatment of the asymptotic and homogenization methods in the theory of oscillations in combination with Pad approximations. With its wealth of interesting examples, this book will prove useful as an introduction to the field for novices and as a reference for specialists.

Book Numerical Methods for Ordinary Differential Equations

Download or read book Numerical Methods for Ordinary Differential Equations written by David F. Griffiths and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Numerical Analysis for Applied Science

Download or read book Numerical Analysis for Applied Science written by Myron B. Allen, III and published by John Wiley & Sons. This book was released on 2019-04-05 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pragmatic and Adaptable Textbook Meets the Needs of Students and Instructors from Diverse Fields Numerical analysis is a core subject in data science and an essential tool for applied mathematicians, engineers, and physical and biological scientists. This updated and expanded edition of Numerical Analysis for Applied Science follows the tradition of its precursor by providing a modern, flexible approach to the theory and practical applications of the field. As before, the authors emphasize the motivation, construction, and practical considerations before presenting rigorous theoretical analysis. This approach allows instructors to adapt the textbook to a spectrum of uses, ranging from one-semester, methods-oriented courses to multi-semester theoretical courses. The book includes an expanded first chapter reviewing useful tools from analysis and linear algebra. Subsequent chapters include clearly structured expositions covering the motivation, practical considerations, and theory for each class of methods. The book includes over 250 problems exploring practical and theoretical questions and 32 pseudocodes to help students implement the methods. Other notable features include: A preface providing advice for instructors on using the text for a single semester course or multiple-semester sequence of courses Discussion of topics covered infrequently by other texts at this level, such as multidimensional interpolation, quasi-Newton methods in several variables, multigrid methods, preconditioned conjugate-gradient methods, finite-difference methods for partial differential equations, and an introduction to finite-element theory New topics and expanded treatment of existing topics to address developments in the field since publication of the first edition More than twice as many computational and theoretical exercises as the first edition. Numerical Analysis for Applied Science, Second Edition provides an excellent foundation for graduate and advanced undergraduate courses in numerical methods and numerical analysis. It is also an accessible introduction to the subject for students pursuing independent study in applied mathematics, engineering, and the physical and life sciences and a valuable reference for professionals in these areas.

Book Numerical Methods for Initial Value Problems in Ordinary Differential Equations

Download or read book Numerical Methods for Initial Value Problems in Ordinary Differential Equations written by Simeon Ola Fatunla and published by Academic Press. This book was released on 2014-05-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Method for Initial Value Problems in Ordinary Differential Equations deals with numerical treatment of special differential equations: stiff, stiff oscillatory, singular, and discontinuous initial value problems, characterized by large Lipschitz constants. The book reviews the difference operators, the theory of interpolation, first integral mean value theorem, and numerical integration algorithms. The text explains the theory of one-step methods, the Euler scheme, the inverse Euler scheme, and also Richardson's extrapolation. The book discusses the general theory of Runge-Kutta processes, including the error estimation, and stepsize selection of the R-K process. The text evaluates the different linear multistep methods such as the explicit linear multistep methods (Adams-Bashforth, 1883), the implicit linear multistep methods (Adams-Moulton scheme, 1926), and the general theory of linear multistep methods. The book also reviews the existing stiff codes based on the implicit/semi-implicit, singly/diagonally implicit Runge-Kutta schemes, the backward differentiation formulas, the second derivative formulas, as well as the related extrapolation processes. The text is intended for undergraduates in mathematics, computer science, or engineering courses, andfor postgraduate students or researchers in related disciplines.

Book Nonlinear Ordinary Differential Equations

Download or read book Nonlinear Ordinary Differential Equations written by Dominic Jordan and published by Oxford University Press on Demand. This book was released on 2007-08-23 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions.

Book Applied Mechanics Reviews

Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1974 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: