EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Study of Finite Element Methods for Convection diffusion Problem

Download or read book Numerical Study of Finite Element Methods for Convection diffusion Problem written by Vladimir V. Akimov and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Methods for Flow Problems

Download or read book Finite Element Methods for Flow Problems written by Jean Donea and published by John Wiley & Sons. This book was released on 2003-06-02 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.

Book Revival  Numerical Solution Of Convection Diffusion Problems  1996

Download or read book Revival Numerical Solution Of Convection Diffusion Problems 1996 written by K.W. Morton and published by CRC Press. This book was released on 2019-02-25 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics.

Book Finite Element Methods for Computational Fluid Dynamics

Download or read book Finite Element Methods for Computational Fluid Dynamics written by Dmitri Kuzmin and published by SIAM. This book was released on 2014-12-18 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory.?Finite Element Methods for Computational Fluid Dynamics: A Practical Guide?explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.?

Book Numerical Methods for Singularly Perturbed Differential Equations

Download or read book Numerical Methods for Singularly Perturbed Differential Equations written by Hans-Görg Roos and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of singular perturbed differential equations began early in this century, when approximate solutions were constructed from asymptotic ex pansions. (Preliminary attempts appear in the nineteenth century [vD94].) This technique has flourished since the mid-1960s. Its principal ideas and methods are described in several textbooks. Nevertheless, asymptotic ex pansions may be impossible to construct or may fail to simplify the given problem; then numerical approximations are often the only option. The systematic study of numerical methods for singular perturbation problems started somewhat later - in the 1970s. While the research frontier has been steadily pushed back, the exposition of new developments in the analysis of numerical methods has been neglected. Perhaps the only example of a textbook that concentrates on this analysis is [DMS80], which collects various results for ordinary differential equations, but many methods and techniques that are relevant today (especially for partial differential equa tions) were developed after 1980.Thus contemporary researchers must comb the literature to acquaint themselves with earlier work. Our purposes in writing this introductory book are twofold. First, we aim to present a structured account of recent ideas in the numerical analysis of singularly perturbed differential equations. Second, this important area has many open problems and we hope that our book will stimulate further investigations.Our choice of topics is inevitably personal and reflects our own main interests.

Book Finite Element Methods for Convection Dominated Flows

Download or read book Finite Element Methods for Convection Dominated Flows written by Thomas J. R. Hughes and published by . This book was released on 1979 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Numerical Methods for Singularly Perturbed Differential Equations

Download or read book Robust Numerical Methods for Singularly Perturbed Differential Equations written by Hans-Görg Roos and published by Springer Science & Business Media. This book was released on 2008-09-17 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.

Book Finite Elements and Fast Iterative Solvers

Download or read book Finite Elements and Fast Iterative Solvers written by Howard Elman and published by OUP Oxford. This book was released on 2014-06-19 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Book Finite Elements

    Book Details:
  • Author : Sashikumaar Ganesan
  • Publisher : Cambridge University Press
  • Release : 2017-05-11
  • ISBN : 1108415709
  • Pages : 217 pages

Download or read book Finite Elements written by Sashikumaar Ganesan and published by Cambridge University Press. This book was released on 2017-05-11 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy-to-understand guide covering the key principles of finite element methods and its applications to differential equations.

Book Layer Adapted Meshes for Reaction Convection Diffusion Problems

Download or read book Layer Adapted Meshes for Reaction Convection Diffusion Problems written by Torsten Linß and published by Springer. This book was released on 2009-11-21 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book on numerical methods for singular perturbation problems – in part- ular, stationary reaction-convection-diffusion problems exhibiting layer behaviour. More precisely, it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. Numerical methods for singularly perturbed differential equations have been studied since the early 1970s and the research frontier has been constantly - panding since. A comprehensive exposition of the state of the art in the analysis of numerical methods for singular perturbation problems is [141] which was p- lished in 2008. As that monograph covers a big variety of numerical methods, it only contains a rather short introduction to layer-adapted meshes, while the present book is exclusively dedicated to that subject. An early important contribution towards the optimisation of numerical methods by means of special meshes was made by N.S. Bakhvalov [18] in 1969. His paper spawned a lively discussion in the literature with a number of further meshes - ing proposed and applied to various singular perturbation problems. However, in the mid 1980s, this development stalled, but was enlivened again by G.I. Shishkin’s proposal of piecewise-equidistant meshes in the early 1990s [121,150]. Because of their very simple structure, they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on c- peting meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue.

Book Moving Finite Element Method

Download or read book Moving Finite Element Method written by Maria do Carmo Coimbra and published by CRC Press. This book was released on 2016-11-30 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on process simulation in chemical engineering with a numerical algorithm based on the moving finite element method (MFEM). It offers new tools and approaches for modeling and simulating time-dependent problems with moving fronts and with moving boundaries described by time-dependent convection-reaction-diffusion partial differential equations in one or two-dimensional space domains. It provides a comprehensive account of the development of the moving finite element method, describing and analyzing the theoretical and practical aspects of the MFEM for models in 1D, 1D+1d, and 2D space domains. Mathematical models are universal, and the book reviews successful applications of MFEM to solve engineering problems. It covers a broad range of application algorithm to engineering problems, namely on separation and reaction processes presenting and discussing relevant numerical applications of the moving finite element method derived from real-world process simulations.

Book Numerical Solution Of Convection Diffusion Problems

Download or read book Numerical Solution Of Convection Diffusion Problems written by K.W. Morton and published by Chapman and Hall/CRC. This book was released on 1996-05-15 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics. This book will be accessible and helpful to engineers, scientists, mathematicians, and to those engaged in solving real practical problems as well as those interested in developing further the theoretical basis for the methods used.

Book Convection diffusion Problems

Download or read book Convection diffusion Problems written by Martin Stynes and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this c.

Book Convection Diffusion Problems

Download or read book Convection Diffusion Problems written by Martin Stynes and published by American Mathematical Soc.. This book was released on 2018-11-21 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this class of problems. At first they examine finite-difference methods for two-point boundary value problems, as their analysis requires little theoretical background. Upwinding, artificial diffusion, uniformly convergent methods, and Shishkin meshes are some of the topics presented. Throughout, the authors are concerned with the accuracy of solutions when the diffusion coefficient is close to zero. Later in the book they concentrate on finite element methods for problems posed in one and two dimensions. This lucid yet thorough account of convection-dominated convection-diffusion problems and how to solve them numerically is meant for beginning graduate students, and it includes a large number of exercises. An up-to-date bibliography provides the reader with further reading.

Book Finite Element Analysis for Heat Transfer

Download or read book Finite Element Analysis for Heat Transfer written by Hou-Cheng Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents an introduction to the application of the finite ele ment method to the analysis of heat transfer problems. The discussion has been limited to diffusion and convection type of heat transfer in solids and fluids. The main motivation of writing this book stems from two facts. Firstly, we have not come across any other text which provides an intro duction to the finite element method (FEM) solely from a heat transfer perspective. Most introductory texts attempt to teach FEM from a struc tural engineering background, which may distract non-structural engineers from pursuing this important subject with full enthusiasm. We feel that our approach provides a better alternative for non-structural engineers. Secondly, for people who are interested in using FEM for heat transfer, we have attempted to cover a wide range of topics, presenting the essential the ory and full implementational details including two FORTRAN programs. In addition to the basic FEM heat transfer concepts and implementation, we have also presented some modem techniques which are being used to enhance the accuracy and speed of the conventional method. In writing the text we have endeavoured to keep it accessible to persons with qualifications of no more than an engineering graduate. As mentioned earlier this book may be used to learn FEM by beginners, this may include undergraduate students and practicing engineers. However, there is enough advanced material to interest more experienced practitioners.

Book The Finite Element Method in Heat Transfer and Fluid Dynamics  Third Edition

Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics Third Edition written by J. N. Reddy and published by CRC Press. This book was released on 2010-04-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.

Book hp Finite Element Methods for Singular Perturbations

Download or read book hp Finite Element Methods for Singular Perturbations written by Jens M. Melenk and published by Springer. This book was released on 2004-10-19 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.