EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonlinear Ordinary Differential Equations

Download or read book Nonlinear Ordinary Differential Equations written by Martin Hermann and published by Springer. This book was released on 2016-05-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Book Numerical Methods for Nonlinear Partial Differential Equations

Download or read book Numerical Methods for Nonlinear Partial Differential Equations written by Sören Bartels and published by Springer. This book was released on 2015-01-19 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

Book Numerical Solutions of Boundary Value Problems of Non Linear Differential Equations

Download or read book Numerical Solutions of Boundary Value Problems of Non Linear Differential Equations written by Sujaul Chowdhury and published by Chapman & Hall/CRC. This book was released on 2021-10-25 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents in comprehensive detail numerical solutions to boundary value problems of a number of non-linear differential equations. Replacing derivatives by finite difference approximations in these differential equations leads to a system of non-linear algebraic equations which we have solved using Newton's iterative method. In each case, we have also obtained Euler solutions and ascertained that the iterations converge to Euler solutions. We find that, except for the boundary values, initial values of the 1st iteration need not be anything close to the final convergent values of the numerical solution. Programs in Mathematica 6.0 were written to obtain the numerical solutions.

Book Nonlinear Ordinary Differential Equations

Download or read book Nonlinear Ordinary Differential Equations written by Dominic Jordan and published by Oxford University Press. This book was released on 2007-08-23 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a thoroughly updated and expanded 4th edition of the classic text Nonlinear Ordinary Differential Equations by Dominic Jordan and Peter Smith. Including numerous worked examples and diagrams, further exercises have been incorporated into the text and answers are provided at the back of the book. Topics include phase plane analysis, nonlinear damping, small parameter expansions and singular perturbations, stability, Liapunov methods, Poincare sequences, homoclinicbifurcation and Liapunov exponents.Over 500 end-of-chapter problems are also included and as an additional resource fully-worked solutions to these are provided in the accompanying text Nonlinear Ordinary Differential Equations: Problems and Solutions, (OUP, 2007).Both texts cover a wide variety of applications whilst keeping mathematical prequisites to a minimum making these an ideal resource for students and lecturers in engineering, mathematics and the sciences.

Book Nonlinear Differential Equations of Chemically Reacting Systems

Download or read book Nonlinear Differential Equations of Chemically Reacting Systems written by George R. Gavalas and published by Springer Science & Business Media. This book was released on 2013-03-13 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years considerable interest has developed in the mathe matical analysis of chemically reacting systems both in the absence and in the presence of diffusion. Earlier work has been limited to simple problems amenable to closed form solutions, but now the computer permits the numerical solution of complex systems of nonlinear differ ential equations. The numerical approach provides quantitative infor mation, but for practical reasons it must be limited to a rather narrow range of the parameters of the problem. Consequently, it is desirable to obtain broader qualitative information about the solutions by in vestigating from a more fundamental mathematical point of view the structure of the differential equations. This theoretical approach can actually complement and guide the computational approach by narrow ing down trial and error procedures, pinpointing singularities and suggesting methods for handling them. The study of the structure of the differential equations may also clarify some physical principles and suggest new experiments. A serious limitation ofthe theoretical approach is that many of the results obtained, such as the sufficient conditions for the stability of the steady state, turn out to be very conservative. Thus the theoretical and computational approaches are best used to gether for the purpose of understanding, designing, and controlling chemically reacting systems. The present monograph is intended as a contribution to the theory of the differential equations describing chemically reacting systems.

Book Nonlinear Ordinary Differential Equations

Download or read book Nonlinear Ordinary Differential Equations written by R. Grimshaw and published by Routledge. This book was released on 2017-10-19 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.

Book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Download or read book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 1994-12-01 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Book Introduction to Nonlinear Differential and Integral Equations

Download or read book Introduction to Nonlinear Differential and Integral Equations written by Harold Thayer Davis and published by . This book was released on 1960 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Download or read book Solving Nonlinear Partial Differential Equations with Maple and Mathematica written by Inna Shingareva and published by Springer Science & Business Media. This book was released on 2011-07-24 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).

Book Nonlinear Partial Differential Equations

Download or read book Nonlinear Partial Differential Equations written by Mi-Ho Giga and published by Springer Science & Business Media. This book was released on 2010-05-30 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.

Book Introduction to Numerical Methods in Differential Equations

Download or read book Introduction to Numerical Methods in Differential Equations written by Mark H. Holmes and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.

Book PETSc for Partial Differential Equations  Numerical Solutions in C and Python

Download or read book PETSc for Partial Differential Equations Numerical Solutions in C and Python written by Ed Bueler and published by SIAM. This book was released on 2020-10-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

Book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Download or read book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem written by Roland Glowinski and published by SIAM. This book was released on 2015-11-04 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Book Numerical Solutions of Partial Differential Equations

Download or read book Numerical Solutions of Partial Differential Equations written by Silvia Bertoluzza and published by Springer Science & Business Media. This book was released on 2009-03-13 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.

Book Numerical Solutions of Realistic Nonlinear Phenomena

Download or read book Numerical Solutions of Realistic Nonlinear Phenomena written by J. A. Tenreiro Machado and published by Springer Nature. This book was released on 2020-02-19 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection covers new aspects of numerical methods in applied mathematics, engineering, and health sciences. It provides recent theoretical developments and new techniques based on optimization theory, partial differential equations (PDEs), mathematical modeling and fractional calculus that can be used to model and understand complex behavior in natural phenomena. Specific topics covered in detail include new numerical methods for nonlinear partial differential equations, global optimization, unconstrained optimization, detection of HIV- Protease, modelling with new fractional operators, analysis of biological models, and stochastic modelling.

Book Fractional Partial Differential Equations And Their Numerical Solutions

Download or read book Fractional Partial Differential Equations And Their Numerical Solutions written by Boling Guo and published by World Scientific. This book was released on 2015-03-09 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope.This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau-Lifshitz equations and fractional Ginzburg-Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs.

Book Numerical Solution of Ordinary Differential Equations

Download or read book Numerical Solution of Ordinary Differential Equations written by Kendall Atkinson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.