EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Combustion Instabilities in Gas Turbine Engines

Download or read book Combustion Instabilities in Gas Turbine Engines written by Timothy C. Lieuwen and published by AIAA (American Institute of Aeronautics & Astronautics). This book was released on 2005 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.

Book Flow and Combustion in Advanced Gas Turbine Combustors

Download or read book Flow and Combustion in Advanced Gas Turbine Combustors written by Johannes Janicka and published by Springer Science & Business Media. This book was released on 2012-10-29 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 “Flow and Combustion in Future Gas Turbine Combustion Chambers” funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts

Book Reduced Order Models and Large Eddy Simulation for Combustion Instabilities in Aeronautical Gas Turbines

Download or read book Reduced Order Models and Large Eddy Simulation for Combustion Instabilities in Aeronautical Gas Turbines written by Fabien Dupuy (docteur en physique).) and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly stringent regulations as well as environmental concerns have lead gas turbine powered engine manufacturers to develop the current generation of combustors, which feature lower than ever fuel consumption and pollutant emissions. However, modern combustor designs have been shown to be prone to combustion instabilities, where the coupling between acoustics of the combustor and the flame results in large pressure oscillations and vibrations within the combustion chamber. These instabilities can cause structural damages to the engine or even lead to its destruction. At the same time, considerable developments have been achieved in the numerical simulation domain, and Computational Fluid Dynamics (CFD) has proven capable of capturing unsteady flame dynamics and combustion instabilities for aforementioned engines. Still, even with the current large and fast increasing computing capabilities, time remains the key constraint for these high fidelity yet computationally intensive calculations. Typically, covering the entire range of operating conditions for an industrial engine is still out of reach. In that respect, low order models exist and can be efficient at predicting the occurrence of combustion instabilities, provided an adequate modeling of the flame/acoustics interaction as appearing in the system is available. This essential piece of information is usually recast as the so called Flame Transfer Function (FTF) relating heat release rate fluctuations to velocity fluctuations at a given point. One way to obtain this transfer function is to rely on analytical models, but few exist for turbulent swirling flames. Another way consists in performing costly experiments or numerical simulations, negating the requested fast prediction capabilities. This thesis therefore aims at providing fast, yet reliable methods to allow for low order combustion instabilities modeling. In that context, understanding the underlying mechanisms of swirling flame acoustic response is also targeted. To address this issue, a novel hybrid approach is first proposed based on a reduced set of high fidelity simulations that can be used to determine input parameters of an analytical model used to express the FTF of premixed swirling flames. The analytical model builds on previous works starting with a level-set description of the flame front dynamics while also accounting for the acoustic-vorticity conversion through a swirler. For such a model, validation is obtained using reacting stationary and pulsed numerical simulations of a laboratory scale premixed swirl stabilized flame. The model is also shown to be able to handle various perturbation amplitudes. At last, 3D high fidelity simulations of an industrial gas turbine powered by a swirled spray flame are performed to determine whether a combustion instability observed in experiments can be predicted using numerical analysis. To do so, a series of forced simulations is carried out in en effort to highlight the importance of the two-phase flow flame response evaluation. In that case, sensitivity to reference velocity perturbation probing positions as well as the amplitude and location of the acoustic perturbation source are investigated. The analytical FTF model derived in the context of a laboratory premixed swirled burner is furthermore gauged in this complex case. Results show that the unstable mode is predicted by the acoustic analysis, but that the flame model proposed needs further improvements to extend its applicability range and thus provide data relevant to actual aero-engines.

Book Thermoacoustic Combustion Instability Control

Download or read book Thermoacoustic Combustion Instability Control written by Dan Zhao and published by Academic Press. This book was released on 2023-02-13 with total page 1145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. - Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology - Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way - Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms

Book Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion

Download or read book Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion written by Bart Merci and published by Springer Science & Business Media. This book was released on 2011-06-20 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the outcome of the 1st International Workshop on Turbulent Spray Combustion held in 2009 in Corsica (France). The focus is on reporting the progress of experimental and numerical techniques in two-phase flows, with emphasis on spray combustion. The motivation for studies in this area is that knowledge of the dominant phenomena and their interactions in such flow systems is essential for the development of predictive models and their use in combustor and gas turbine design. This necessitates the development of accurate experimental methods and numerical modelling techniques. The workshop aimed at providing an opportunity for experts and young researchers to present the state-of-the-art, discuss new developments or techniques and exchange ideas in the areas of experimentations, modelling and simulation of reactive multiphase flows. The first two papers reflect the contents of the invited lectures, given by experts in the field of turbulent spray combustion. The first concerns computational issues, while the second deals with experiments. These lectures initiated very interesting and interactive discussions among the researchers, further pursued in contributed poster presentations. Contributions 3 and 4 focus on some aspects of the impact of the interaction between fuel evaporation and combustion on spray combustion in the context of gas turbines, while the final article deals with the interaction between evaporation and turbulence.

Book Simulation and Control of Instationary Reactive Flows in Matrix Burner for Small Power Gas Turbine Applications

Download or read book Simulation and Control of Instationary Reactive Flows in Matrix Burner for Small Power Gas Turbine Applications written by James Fayiah Willie and published by Cuvillier Verlag. This book was released on 2012-02-02 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this thesis is to analyze combustion instabilities in a matrix burner. The various tools that exist for analyzing thermoacoustic instabilities are applied to the matrix burner with multiple flames. The principal goals are to determine the primary causes of combustion instabilities in the burner and to explore ways of controlling such instabilities in order to prevent damage to the burner. To achieve these goals, the stability map of the burner obtained from measurements is analyzed. This is followed by the analysis of the aerodynamics of the cold flow using CFD. Results obtained from CFD are validated with PIV and LDA results from measurements. Critical are the centerline axial velocity inside the combustion chamber and the recirculation zones on the walls of the combustion chamber and those between the various slots of the matrix burner. Cold flow simulations are followed by reactive flow simulations for both gaseous and liquid fuels. A detailed atomization model is developed for the liquid fuel case from experimental data. Two combustion models, namely, the combined finite rate/eddy dissipation model and the finite rate chemistry model are compared in the CFD simulations of combustion instabilities and validation with measurements are done. The latter is chosen over the former because it accounts for chemistry and it is not numerically dissipative. Two CFD softwares, Fluent and CFX are also compared to determine which is better at capturing acoustics. System identification using CFD is used to determine the flame transfer function and the acoustic transfer matrix. This is followed by the use of acoustic forcing and fuel modulation on the primary and pilot in order to limit the amplitude of the instabilities inside the matrix burner combustor. The 1D acoustic network is used to determine the longitudinal eigenmodes of the matrix burner. This is followed by the use of 3D finite element method (FEM) and fluid-structure interaction (FSI) to determine whether a coupling exist between the fluid and structure of the matrix burner combustor and vice versa. Finally, Full harmonic analysis is performed for the rectangular combustor and the results obtained are validated with analytical results. This is followed by the 3D structure modal analysis of the full matrix burner test rig.

Book Combustion Noise

Download or read book Combustion Noise written by Anna Schwarz and published by Springer Science & Business Media. This book was released on 2009-06-17 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: November, 2008 Anna Schwarz, Johannes Janicka In the last thirty years noise emission has developed into a topic of increasing importance to society and economy. In ?elds such as air, road and rail traf?c, the control of noise emissions and development of associated noise-reduction techno- gies is a central requirement for social acceptance and economical competitiveness. The noise emission of combustion systems is a major part of the task of noise - duction. The following aspects motivate research: • Modern combustion chambers in technical combustion systems with low pol- tion exhausts are 5 - 8 dB louder compared to their predecessors. In the ope- tional state the noise pressure levels achieved can even be 10-15 dB louder. • High capacity torches in the chemical industry are usually placed at ground level because of the reasons of noise emissions instead of being placed at a height suitable for safety and security. • For airplanes the combustion emissions become a more and more important topic. The combustion instability and noise issues are one major obstacle for the introduction of green technologies as lean fuel combustion and premixed burners in aero-engines. The direct and indirect contribution of combustion noise to the overall core noise is still under discussion. However, it is clear that the core noise besides the fan tone will become an important noise source in future aero-engine designs. To further reduce the jet noise, geared ultra high bypass ratio fans are driven by only a few highly loaded turbine stages.

Book Stabilization and Dynamic of Premixed Swirling Flames

Download or read book Stabilization and Dynamic of Premixed Swirling Flames written by Paul Palies and published by Academic Press. This book was released on 2020-07-03 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stabilization and Dynamic of Premixed Swirling Flames: Prevaporized, Stratified, Partially, and Fully Premixed Regimes focuses on swirling flames in various premixed modes (stratified, partially, fully, prevaporized) for the combustor, and development and design of current and future swirl-stabilized combustion systems. This includes predicting capabilities, modeling of turbulent combustion, liquid fuel modeling, and a complete overview of stabilization of these flames in aeroengines. The book also discusses the effects of the operating envelope on upstream fresh gases and the subsequent impact of flame speed, combustion, and mixing, the theoretical framework for flame stabilization, and fully lean premixed injector design. Specific attention is paid to ground gas turbine applications, and a comprehensive review of stabilization mechanisms for premixed, partially-premixed, and stratified premixed flames. The last chapter covers the design of a fully premixed injector for future jet engine applications. - Features a complete view of the challenges at the intersection of swirling flame combustors, their requirements, and the physics of fluids at work - Addresses the challenges of turbulent combustion modeling with numerical simulations - Includes the presentation of the very latest numerical results and analyses of flashback, lean blowout, and combustion instabilities - Covers the design of a fully premixed injector for future jet engine applications

Book Combustion Instability Modeling and Analysis

Download or read book Combustion Instability Modeling and Analysis written by and published by . This book was released on 1995 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO(subscript x) emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

Book Modeling and Simulation of Turbulent Combustion

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Book Predicton of Combustion Driven Dynamic Instability for High Performance Gas Turbine Combustors

Download or read book Predicton of Combustion Driven Dynamic Instability for High Performance Gas Turbine Combustors written by B. Sekar and published by . This book was released on 2001 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper describes the development and application of a combined detailed three-dimensional large eddy simulation (LES) and one-dimensional analysis tool to predict and actively control combustion-driven dynamic instabilities in gas turbine combustors. The integration of detailed finite-rate kinetics into LES and use of In-situ Adaptive Tabulation (ISAT) to efficiently calculate multi-species finite-rate kinetics in LES along with the use of global kinetics in the one-dimensional analysis tool was demonstrated. The results showed that LES can be effectively used to simulate complex reacting flows in gas turbine combustors and to identify regions of combustion instabilities. The results also showed that the one-dimensional combustor analysis with global kinetics can then be used both to capture the combustor unstable modes of the predicted regions of instabilities and to actively control these instabilities. In particular, the results demonstrated that by modulating the primary fuel injection rates and the time-lag between the instant of fuel-air mixture injection and heat release, damping out the instabilities may be achieved.

Book Numerical Simulations of Gas Turbine Combustor Flows

Download or read book Numerical Simulations of Gas Turbine Combustor Flows written by D. Lee and published by . This book was released on 1990 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulations of Stationary and Transient Spray Combustion for Aircraft Gas Turbine Applications

Download or read book Numerical Simulations of Stationary and Transient Spray Combustion for Aircraft Gas Turbine Applications written by Athanase Alain Fossi and published by . This book was released on 2017 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of current and future aero gas turbine engines is mainly focused on the safety, the performance, the energy consumption, and increasingly on the reduction of pollutants and noise level. To this end, the engine's design phases are subjected to improving processes continuously through experimental and numerical investigations. The present thesis is concerned with the simulation of transient and steady combustion regimes in an aircraft gas turbine operating under various combustion modes. Particular attention is paid to the accuracy of the results, the computational cost, and the ease of handling the numerical tool from an industrial standpoint. Thus, a commercial Computational Fluid Dynamics (CFD) code widely used in industry is selected as the numerical tool. A CFD methodology consisting of its advanced turbulence and combustion models, coupled with a subgrid spark-based ignition model, is formulated with the final goal of predicting the whole ignition sequence under cold start and altitude relight conditions, and the main flame trends in the steady combustion regime. At first, attention is focused on the steady combustion regime. Various CFD methodologies are formulated using three turbulence models, namely, the Unsteady Reynolds-Averaged Navier-Stokes (URANS), the Scale-Adaptive Simulation (SAS), and the Large Eddy Simulation (LES) models. To appraise the relevance of incorporating a realistic chemistry model and chemical non-equilibrium effects, two different assumptions are considered, namely, the infinitely-fast chemistry through the partial equilibrium model, and the finite-rate chemistry through the diffusion flamelet model. For each of the two assumptions, both one-component and two-component fuels are considered as surrogates for kerosene (Jet A-1). The resulting CFD models are applied to a swirl-stabilized combustion chamber to assess their ability to retrieve the spray flow and combustion properties in the steady combustion regime. Subsequently, the ratios between the accuracy of the results and the computational cost of the three CFD methodologies are explicitly compared. The second intermediate study is devoted to the ignition sequence preceding the steady combustion regime. A bluff-body stabilized burner based on gaseous fuel, and employing a spark-based igniter, is considered to calibrate the CFD model formulated. This burner of relatively simple geometry can provide greater understanding of complex reactive flow features, especially with regard to ignitability and stability. The most robust of the CFD methodologies formulated in the previous configuration is reconsidered. As this burner involves a partially-premixed combustion mode, a combustion model based on the mixture fraction-progress variable formulation is adopted with the assumptions of infinitely-fast chemistry and finite-rate chemistry through the Bray-Moss-Libby (BML) and Flamelet Generated Manifold (FGM) models, respectively. The ignition model is first customized by implementing the properties of the flame considered. Thereafter, the customized ignition model is coupled to the LES solver and combustion models based on the two above-listed assumptions. To assess the predictive capabilities of the resulting CFD methodologies, the latter are used to predict ignition events resulting from the spark deposition at various locations of the burner, and the results are quantitatively and qualitatively validated by comparing the latter to their experimental counterparts. Finally, the CFD methodology validated in the gaseous configuration is extended to spray combustion by first coupling the latter to the spray module, and by implementing the flame properties of kerosene in the ignition model. The resulting CFD model is first applied to the swirl-stabilized combustor investigated previously, with the aim of predicting the whole ignition sequence and improving the previous predictions of the combustion properties in the resulting steady regime. Subsequently, the CFD methodology is applied to a scaled can combustor with the aim of predicting ignition events under cold start and altitude relight operating conditions. The ability of the CFD methodology to predict ignition events under the two operating conditions is assessed by contrasting the numerical predictions to the corresponding experimental ignition envelopes. A qualitative validation of the ignition sequence is also done by comparing the numerical ignition sequence to the high-speed camera images of the corresponding ignition event.

Book Large Eddy Simulation of Gas Turbine Combustors Using Flamelet Manifold Methods

Download or read book Large Eddy Simulation of Gas Turbine Combustors Using Flamelet Manifold Methods written by Christopher Fernandez Lietz and published by . This book was released on 2015 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this work was to develop a large-eddy simulation (LES) based computational tool for application to both premixed and non- premixed combustion of low-Mach number flows in gas turbines. In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES is particularly well-suited for the compu- tation of large scale mixing, which provides a firm starting point for the small scale models which describe the reaction processes. Even models developed in the context of Reynolds averaged Navier-Stokes (RANS) exhibit superior results in the LES framework. Although LES is a widespread topic of research, in industrial applications it is often seen as a less attractive option than RANS, which is computationally inexpensive and often returns sufficiently accurate results. However, there are many commonly encountered problems for which RANS is unsuitable. This work is geared towards such instances, with a solver developed for use in unsteady reacting flows on unstructured grids. The work is divided into two sections. First, a robust CFD solver for a generalized incompressible, reacting flow configuration is developed. The computational algorithm, which com- bines elements of the low-Mach number approximation and pressure projection methods with other techniques, is described. Coupled to the flow solver is a combustion model based on the flamelet progress variable approach (FPVA), adapted to current applications. Modifications which promote stability and accuracy in the context of unstructured meshes are also implemented. Second, the LES methodology is used to study three specific problems. The first is a channel geometry with a lean premixed hydrogen mixture, in which the unsteady flashback phenomenon is induced. DNS run in tandem is used for establishing the validity of the LES. The second problem is a swirling gas turbine combustor, which extends the channel flashback study to a more practical application with stratified premixed methane and hydrogen/methane mixtures. Experimental results are used for comparison. Finally, the third problem tests the solver's abilities further, using a more complex fuel JP-8, Lagrangian fuel droplets, and a complicated geometry. In this last configu- ration, experimental results validate early simulations while later simulations examine the physics of reacting sprays under high centripetal loading.

Book Advanced Turbulent Combustion Modeling for Gas Turbine Application

Download or read book Advanced Turbulent Combustion Modeling for Gas Turbine Application written by Andrea Donini and published by Andrea Donini. This book was released on with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: In spite of the increasing presence of renewable energy sources, fossil fuels will remain the primary supply of the world's energy needs for the upcoming future. Modern gas-turbine based systems represent one of the most efficient large-scale power generation technology currently available. Alongside this, gas-turbine power plants operate with very low emissions, have flexible operational characteristics and are able to utilize a broad range of fuels. It is expected that gas-turbine based plants will play an important role as an effective means of converting combustion energy in the future as well, because of the vast potential energy savings. The numerical approach to the design of complex systems such as gas-turbines has gained a continuous growth of interest in the last few decades. This because simulations are foreseen to provide a tremendous increase in the combustor efficiency, fuel-flexibility and quality over the next future. In this dissertation, an advanced turbulent combustion technique is implemented and progressively developed for the simulation of all the features that are typically observed in stationary gas-turbine combustion, including hydrogen as a fuel. The developed turbulent combustion model retains most of the accuracy of a detailed simulation while drastically reducing its computational time. As a result of this work, the advancement of power generation plants can be accelerated, paving the way for future developments of alternative fuel usage in a cleaner and more efficient combustion.