EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Simulation of the Durability Mechanics of Cement based Materials

Download or read book Numerical Simulation of the Durability Mechanics of Cement based Materials written by Stefano Berton and published by . This book was released on 2003 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Simulation on Cement Based Materials

Download or read book Molecular Simulation on Cement Based Materials written by Dongshuai Hou and published by Springer Nature. This book was released on 2019-09-26 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a number of studies on the molecular dynamics of cement-based materials. It introduces a practical molecular model of cement-hydrate, delineates the relationship between molecular structure and nanoscale properties, reveals the transport mechanism of cement-hydrate, and provides useful methods for material design. Based on the molecular model presented here, the book subsequently sheds light on nanotechnology applications in the design of construction and building materials. As such, it offers a valuable asset for researchers, scientists, and engineers in the field of construction and building materials.

Book Simulating the Durability Mechanics of Cement Composites

Download or read book Simulating the Durability Mechanics of Cement Composites written by Zhen Li and published by . This book was released on 2007 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation of Fresh Concrete Flow

Download or read book Simulation of Fresh Concrete Flow written by Nicolas Roussel and published by Springer Science & Business Media. This book was released on 2014-03-26 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work deals with numerical simulations of fresh concrete flows. After the first introductory chapter dealing with the various physical phenomena involved in flows of fresh cementitious materials, the aim of the second chapter is to give an overview of the work carried out on simulation of flow of cement-based materials using computational fluid dynamics (CFD). This includes governing equations, constitutive equations, analytical and numerical solutions, and examples showing simulations of testing, mixing and castings. The third chapter focuses on the application of Discrete Element Method (DEM) in simulating the flow of fresh concrete. The fourth chapter is an introductory text about numerical errors both in CFD and DEM whereas the fifth and last chapter give some recent examples of numerical simulations developed by various authors in order to simulate the presence of grains or fibers in a non-Newtonian cement matrix.

Book Creep  Shrinkage and Durability Mechanics of Concrete and Concrete Structures  Two Volume Set

Download or read book Creep Shrinkage and Durability Mechanics of Concrete and Concrete Structures Two Volume Set written by Tada-aki Tanabe and published by CRC Press. This book was released on 2008-09-01 with total page 1552 pages. Available in PDF, EPUB and Kindle. Book excerpt: CREEP, SHRINKAGE AND DURABILITY MECHANICS OF CONCRETE AND CONCRETE STRUCTURES contains the keynote lectures, technical reports and contributed papers presented at the Eighth International Conference on Creep, Shrinkage and Durability of Concrete and Concrete Structures (CONCREEP8, Ise-shima, Japan, 30 September - 2 October 2008). The topics covered

Book PRO 39  6th International RILEM Symposium on Fibre Reinforced Concretes  FRC    BEFIB 2004  Volume 1

Download or read book PRO 39 6th International RILEM Symposium on Fibre Reinforced Concretes FRC BEFIB 2004 Volume 1 written by Marco Di Prisco and published by RILEM Publications. This book was released on 2004 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Modelling of Concrete and Concrete Structures

Download or read book Computational Modelling of Concrete and Concrete Structures written by Günther Meschke and published by CRC Press. This book was released on 2022-05-22 with total page 1500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.

Book Molecular Simulation on Cementitious Materials  From Computational Chemistry Method to Application

Download or read book Molecular Simulation on Cementitious Materials From Computational Chemistry Method to Application written by Dongshuai Hou and published by Frontiers Media SA. This book was released on 2022-02-09 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Techniques for Testing of Cement Based Materials

Download or read book Advanced Techniques for Testing of Cement Based Materials written by Marijana Serdar and published by Springer Nature. This book was released on 2020-02-18 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book examines advanced, non-standardized techniques that have been developed for determining different properties of cement paste, mortar and concrete, and provides state-of-the-art information on methods for monitoring hydration-induced changes in cement-based materials (CBMs). These methods are often nondestructive and allow quasi-continuous monitoring covering the time span from placement of the material to formation of a fully hardened cement composite. The book also presents various applications of acoustic emission for characterizing fresh concrete, recent developments in ultrasonic methods for characterizing CBMs since placement, application of ambient response methods for measuring elastic modulus, methods for determining deformational characteristics of CBMs since setting and methods for in situ measurements of stresses in concrete elements during hardening.

Book Advances in Modeling Concrete Service Life

Download or read book Advances in Modeling Concrete Service Life written by Carmen Andrade and published by Springer Science & Business Media. This book was released on 2011-11-23 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, a critical analysis is made on service life models related to reinforcement corrosion. The contributors are on the frontier of knowledge in the field of durability of reinforced concrete. Topics covered in the book include: causes and mechanisms of deterioration, transport mechanisms in concrete, numerical modeling of concrete behavior, durability modeling and prediction, reliability approach to structural design for durability, structural behavior following degradation of concrete structures, deterioration and repair of concrete structures, and corrosion measurement techniques.

Book Computational Modelling of Concrete Structures

Download or read book Computational Modelling of Concrete Structures written by Günther Meschke and published by CRC Press. This book was released on 2018-01-31 with total page 1735 pages. Available in PDF, EPUB and Kindle. Book excerpt: The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. Computational Modelling of Concrete Structures reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. The contributions cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: Multi-scale cement and concrete research: experiments and modelling Aging concrete: from very early ages to decades-long durability Advances in material modelling of plain concrete Analysis of reinforced concrete structures Steel-concrete interaction, fibre-reinforced concrete, and masonry Dynamic behaviour: from seismic retrofit to impact simulation Computational Modelling of Concrete Structures is of special interest to academics and researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.

Book Finite Elements in Civil Engineering Applications

Download or read book Finite Elements in Civil Engineering Applications written by Max.A.N. Hendriks and published by CRC Press. This book was released on 2021-06-23 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings present high-level research in structural engineering, concrete mechanics and quasi-brittle materials, including the prime concern of durability requirements and earthquake resistance of structures.

Book Tension Stiffening in Reinforced High Performance Fiber Reinforced Cement Based Composites

Download or read book Tension Stiffening in Reinforced High Performance Fiber Reinforced Cement Based Composites written by Daniel Mauricio Moreno Luna and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Cement-based composites, such as concrete, are extensively used in a variety of structural applications. However, concrete exhibits a brittle tensile behavior that could lead to reduced durability and structural performance in the long term. The use of discontinuous fibers to reduce the brittleness of the concrete, and improve its post-cracking tensile behavior, has been a focus of structural materials research since the 1960's. Cement-based materials reinforced with short discontinuous fibers are known as Fiber Reinforced Composites (FRC). High Performance Fiber Reinforced Cement-based Composites (HPFRCC) are a special type of FRC materials that exhibit tensile strain-hardening behavior under varied types of loading conditions such as direct tension or bending. The use of HPFRCC materials in structural applications has shown to improve not only durability and long term performance, but also has proven to enhance inelastic load-deformation behavior, ductility, energy dissipation and shear capacity. The use of HPFRCC materials can also result in a potential reduction of steel reinforcement required for both flexure and shear relative to traditional reinforced concrete structures. The interaction between the mild steel and the ductile HPFRCC matrix in tension was investigated in contrast to that of normal weight concrete. The measured responses demonstrated both the tension stiffening effects of HPFRCC materials as well as the early strain hardening and fracture of the reinforcing bar relative to that in a normal weight concrete observed through full specimen response up to fracturing of the reinforcement. All of the HPFRCC specimens tested exhibited multiple cracking in uniaxial tension. Splitting cracks observed in the concrete at low specimen strain levels and in HyFRC and SC-HyFRC specimens at higher specimen strain levels contributed to the spreading of strain along the reinforcing bar in those specimens, resulting in a larger displacement capacity relative to the ECC specimens, which did not exhibit splitting cracks. Early strain hardening is hypothesized to be the reason for the additional strength observed in specimens subjected to flexure where the interaction between the steel and the HPFRCC matrix plays an important role in the load-displacement response. A modified approach for estimating the flexural capacity of a section of reinforced HPFRCC using experimental tension stiffening data was proposed and demonstrated to improve the accuracy of flexural capacity predictions. Two-dimensional finite element modeling approaches using a total strain based constitutive model were investigated. The numerical simulations demonstrated the relevance of using standard characterization tests to define the tensile and compressive stress-strain curves for the material constitutive model. The simulations capture the initial and post cracking stiffness, load at first cracking, load and strain at localization and deformation capacity observed in the experiments. Multiple cracking was observed in the numerical simulations for the ECC and HyFRC. The models were able to simulate the cracking progression and localization of strains at primary and secondary cracks for the ECC and the HyFRC. The numerical simulations that used the splitting bond-slip model captured the distribution of the strains in the steel better than perfect bond and pull-out bond-slip models as the slip in the interface allowed for a less localized failure of the specimens, especially in the ECC models. The models were also able to accurately capture the early hardening behavior observed in the experiments. A methodology to estimate the flexural strength of HPFRCC structural components by using numerical simulation of tension stiffening has been proposed and validated on a high performance fiber reinforced concrete (HPFRC) infill panel and ECC and HyFRC beams. This methodology serves as an extension of the methodology proposed using experimental tension stiffening results. In the absence of additional experiments, numerical simulation is proposed. A good level of accuracy has been found between the predicted and actual flexural capacities of the investigated components. The proposed methodology is based on the current assumptions from planar analysis used in the calculation of flexural strength in reinforced concrete components.

Book Mechanics and Physics of Creep  Shrinkage  and Durability of Concrete

Download or read book Mechanics and Physics of Creep Shrinkage and Durability of Concrete written by Franz-Josef Ulm and published by . This book was released on 2013 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Durability Design of Concrete Structures

Download or read book Durability Design of Concrete Structures written by Kefei Li and published by John Wiley & Sons. This book was released on 2016-08-24 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive coverage of durability of concrete at both material and structural levels, with design related issues Links two active fields in materials science and structural engineering: the durability processes of concrete materials and design methods of concrete structures Facilitates communication between the two communities, helping to implement life-cycle concepts into future design methods of concrete structures Presents state-of-the-art information on the deterioration mechanism and performance evolution of structural concrete under environmental actions and the design methods for durability of concrete structures Provides efficient support and practical tools for life-cycle oriented structural design which has been widely recognized as a new generation of design philosophy for engineering structures The author has long experience working with the topic and the materials presented have been part of the author's current teaching course of Durability and Assessment of Engineering Structures for graduate students at Tsinghua University The design methods and approaches for durability of concrete structures are developed from newly finished high level research projects and have been employed as recommended provisions in design code including Chinese Code and Eurocode 2

Book Computational Modelling of Concrete Structures

Download or read book Computational Modelling of Concrete Structures written by Nenad Bicanic and published by CRC Press. This book was released on 2014-03-04 with total page 1108 pages. Available in PDF, EPUB and Kindle. Book excerpt: The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St Anton am Alberg 2014) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. The conference reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. Conference topics and invited papers cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: * Constitutive and Multiscale Modelling of Concrete * Advances in Computational Modelling * Time Dependent and Multiphysics Problems * Performance of Concrete Structures The book is of special interest to researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.

Book Numerical Modeling Strategies for Sustainable Concrete Structures

Download or read book Numerical Modeling Strategies for Sustainable Concrete Structures written by Pierre Rossi and published by Springer Nature. This book was released on 2022-06-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights the latest advances, innovations, and applications in the field of sustainable concrete structures, as presented by scientists and engineers at the RILEM International Conference on Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS), held in Marseille, France, on July 4-6, 2022. It demonstrates that numerical methods (finite elements, finite volumes, finite differences) are a relevant response to the challenge to optimize the utilization of cement in concrete constructions while checking that these constructions have a lifespan compatible with the stakes of sustainable development. They are indeed accurate tools for an optimized design of concrete constructions, and allow us to consider all types of complexities: for example, those linked to rheological, physicochemical and mechanical properties of concrete, those linked to the geometry of the structures or even to the environmental boundary conditions. This optimization must also respect constraints of time, money, security, energy, CO2 emissions, and, more generally, life cycle more reliably than the codes and analytical approaches currently used. Numerical methods are, undoubtedly, the best calculation tools at the service of concrete eco-construction. The contributions present traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists.