EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Simulation of Flames Using Flamelet Models

Download or read book Numerical Simulation of Flames Using Flamelet Models written by Shamshad Ahmad and published by . This book was released on 2017 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thesis topic is located in the domain of numerical simulation of laminar flames. The principal aim of the presented research is the study of numerical techniques for the multidimensional simulation of flames with low computational costs. Present work is divided into three parts: First part is related to the development of a C++ simulation code for 1D laminar premixed flames. In the second part, a new technique to account for differential diffusion effects is proposed, which is based on tabulated chemistry methods. The third part focuses on the analysis of partially premixed flames. A dedicated one-dimensional flame code is discussed for the simulation of complex/detailed chemistry and diffusion processes in premixed laminar flames. This code is written in C++ and is able to use different diffusion models (Fickian, Hirschfelder and Curtiss). The code yields accurate solutions of the major parameters as well as pollutant formation, both in the flame zone as well as downstream in the post-flame region. Results prove the accuracy of the code when compared to experimental data. Following, a new technique is proposed to include differential diffusion effects into flamelet models. This approach is developed in the context of tabulated chemistry methods.The technique is based on correcting the progress-variable of flamelet models. The main feature of the proposed technique is the use of only one progress variable equation (1D manifold) without requiring a second parameter. This correction technique allows including detailed chemistry effects at low-cost in numerical simulation of multidimensional flames. A series of simulations are carried out for various flames. The results are excellently matched with full model solutions/detailed chemistry solutions. The flamelet solutions databases, namely premixed and non-premixed, are further tested for partially premixed flames. This study is based on the investigation of partially premixed flame using single mode flamelet database solutions. For the verification of database solutions, finite rate chemistry simulations are also carried out to solve partially premixed flames. 3D jet coflow simulations are performed for three different level of premixing and results are compared with experimental data. The results show good agreement along with capabilities and limitations of flamelet databases solutions.

Book Numerical Simulation of Non premixed Laminar and Turbulent Flames by Means of Flamelet Modelling Approaches

Download or read book Numerical Simulation of Non premixed Laminar and Turbulent Flames by Means of Flamelet Modelling Approaches written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep knowledge of combustion phenomena is of great scientific and technological interest. In fact, better design of combustion equipments (furnaces, boilers, engines, etc) can contribute both in the energy efficiency and in the reduction of pollutant formation. One of the limitations to design combustion equipments, or even predict simple flames, is the resolution of the mathematical formulation. Analytical solutions are not feasible, and recently numerical techniques have received enormous interest. Even though the ever-increasing computational capacity, the numerical resolution requires large computational resources due to the inherent complexity of the phenomenon (viz. multidimensional flames, finite rate kinetics, radiation in participating media, turbulence, etc). Thus, development of capable mathematical models reducing the complexity and the stiffness as well as efficient numerical techniques are of great interest. The main contribution of the thesis is the analysis and application of the laminar flamelet concept to the numerical simulation of both laminar and turbulent non-premixed flames. Assuming a one-dimensional behavior of combustion phenomena in the normal direction to the flame front, and considering an appropriate coordinates transformation, flamelet approaches reduce the complexity of the problem. The numerical methodology employed is based on the finite volume technique and a parallel multiblock algorithm is used obtaining an excellent parallel efficiency. A post-processing verification tool is applied to assess the quality of the numerical solutions. Before dealing with flamelet approaches, a co-flow partially premixed methane/air laminar flame is studied for different levels of partial premixing. A comprehensive study is performed considering different mathematical formulations based on the full resolution of the governing equations and their validation against experimental data from the literature. Special attention is paid to the prediction of.

Book Modeling and Simulation of Turbulent Combustion

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Book Direct Numerical Simulation for Turbulent Reacting Flows

Download or read book Direct Numerical Simulation for Turbulent Reacting Flows written by Thierry Baritaud and published by Editions TECHNIP. This book was released on 1996 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Book Numerical Simulation of Turbulent Diffusion Flames Using Flamelet Models on Unstructured Meshes

Download or read book Numerical Simulation of Turbulent Diffusion Flames Using Flamelet Models on Unstructured Meshes written by Jordi Ventosa Molina and published by . This book was released on 2015 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aquesta tesi té com a objectiu desenvolupar mètodes numèrics i algoritmes per a la simulació eficient de flames de difusió en el règim flamelet. Per simular fluxos turbulents i químicament reactius és necessari un marc teòric doble. D'una banda, la descripció del flux es realitza en el context de tècniques Large Eddy Simulation (LES). D'altra banda, la termoquímica es modela per mitjà de models flamelet. El règim flamelet es caracteritza per la divisi ó del procés de combustió en l'estructura de la flama i el transport del flux. Per tant, per estudiar fluxos químicament reactius es requereix un algoritme per calcular fluxos amb densitat variable i un model per descriure la cinètica química. Per assolir aquests objectius, la tesi es divideix en cinc capítols, on cadascun descriu i analitza un aspecte específic dels mètodes numèrics requerits. Al Capítol 1 es detalla la formulació bàsica per descriure fluxos químicament reactius. La cinètica química, i els termes i coeficients de transport per a fluxos multicomponents es detallen. A continuació, es realitza una introducció a la combustió turbulenta, indicant les limitacions per a la simulació d'aquests fluxos quan s'usa cinètica finita, i argumentant la necessitat d'usar models específics. Abans de passar a descriure el model de combustió, en el capítol 2 es descriu i s'estudia un algoritme per a la simulació de fluxos de densitat variable. L'estudi es centra en l' ús de malles no estructurades. En el capítol es descriuen i estudien un esquema temporal d'integració, concretament un esquema multi-pas, i dos esquemes de discretització espacial, esquemes collocated i staggered. En el capítol 3 es descriu un model flamelet per a flames de difusió. En primer lloc s'introdueix el règim flamelet i les equacions de flama en l'espai fracció de mescla. Aleshores, el model Flamelet/Progress-Variable s'utilitza per descriure completament la flama. Els dos paràmetres principals del model són la fracció de mescla i la variable-progrés. A més, es presenta un mètode de diferències finites per a la solució de les equacions flamelet. Donat que les flames objectiu són turbulentes, s'usen funcions de densitat de probabilitat assumides per tal de parametritzar les solucions flamelet mitjançant quantitats estocàstiques. El model permet precomputar la termoquímica de la flama i emmagatzemar-la en una base de dades, la qual és accedida durant les simulacions en l'espai físic. Els dos capítols següents tracten sobre els paràmetres emprats per representar la base de dades flamelet. En primer lloc, al Capítol 4 s'estudia la definició de la variable de progrés, que ha de representar de forma inequívoca l'estat termoquímic. S'ha demostrat que la definició d'aquest paràmetre és depenent del cas. En el capítol es posa de manifest una dependència respecte del model de difusió. Definicions vàlides per a difusió "Fickian" es mostren que donen lloc a distribucions no monòtones quan es considera difusió diferencial. A més, es consideren dos mecanismes químics detallats. Els casos d'estudi inclouen un flama de difusió de CH4/H2/N2 i una flama de CH4 auto-encesa, on el combustible flueix dins un flux d'oxidant calent. En aquest últim cas, es mostra que el mecanisme químic juga un paper central en la predicció de la distància estabilització de la flama. Finalment, quan es consideren flames turbulentes, la base de dades "flamelet" es parametritza emprant variables estocàstiques. Entre ells, la variància de la fracció mescla, que representa la barreja en el nivell subgrid, ha de ser modelada. Ja que les reaccions químiques en el règim flamelet ocorren a escales menors que l'escala de Kolmogorov, és crítica la correcta descripció de la mescla subgrid. Per tant, en el Capítol 5 s'estudien diferents models per a l'avaluació de la variància subgrid.

Book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays

Download or read book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays written by Bart Merci and published by Springer Science & Business Media. This book was released on 2014-03-27 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.

Book Turbulent Premixed Flames

Download or read book Turbulent Premixed Flames written by Nedunchezhian Swaminathan and published by Cambridge University Press. This book was released on 2011-04-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Book Turbulent Combustion

    Book Details:
  • Author : Norbert Peters
  • Publisher : Cambridge University Press
  • Release : 2000-08-15
  • ISBN : 1139428063
  • Pages : 322 pages

Download or read book Turbulent Combustion written by Norbert Peters and published by Cambridge University Press. This book was released on 2000-08-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Book Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Download or read book Data Analysis for Direct Numerical Simulations of Turbulent Combustion written by Heinz Pitsch and published by Springer Nature. This book was released on 2020-05-28 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.

Book Recent Advances in Combustion Modelling

Download or read book Recent Advances in Combustion Modelling written by Bernard Larrouturou and published by World Scientific. This book was released on 1991 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers the contributions of six world experts to a course on combustion modelling. Therefore, a pedagogical effort has been made in writing up these texts, which cover state of the art advances in most aspects of combustion science. The book is aimed at students, researches and engineers, as was the course.

Book Theoretical and Numerical Combustion

Download or read book Theoretical and Numerical Combustion written by Thierry Poinsot and published by R.T. Edwards, Inc.. This book was released on 2005 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,

Book Modeling and Simulation of Turbulent Mixing and Reaction

Download or read book Modeling and Simulation of Turbulent Mixing and Reaction written by Daniel Livescu and published by Springer Nature. This book was released on 2020-02-19 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.

Book Transported Probability Density Function for the Numerical Simulation of Flames Characteristic of Fire

Download or read book Transported Probability Density Function for the Numerical Simulation of Flames Characteristic of Fire written by Daria Burot and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of fire scenarios requires the numerical modeling of various complex process, particularly the gaseous combustion of hydrocarbons including soot production and radiative transfers in a turbulent. The turbulent nature of the flow induces interactions between these processes that need to be taken accurately into account. The purpose of this thesis is to implement a transported Probability Density function method to model these interactions precisely. In conjunction with the flamelet model, the Lindstedt model, and a wide-band correlated-k model, the composition joint-PDF transport equation is solved using the Stochastic Eulerian Fields method. The model is validated by simulating 12 turbulent jet flames covering a large range of Reynolds numbers and fuel sooting propensity. Model prediction are found to be in reasonable agreement with experimental data. Second, the effects of turbulence-radiation interactions (TRI) on soot emission are studied in details, showing that TRI tends to increase soot radiative emission due to temperature fluctuations, but that this increase is smaller for higher Reynolds numbers and higher soot loads. This is due to the negative correlation between soot absorption coefficient and the Planck function. Finally, the effects of taking into account the correlation between mixture fraction and enthalpy defect on flame structure and radiative characteristics are also studied on an ethylene flame, showing that it has weak effect on the mean flame structure but tends to inhibit both temperature fluctuations and radiative loss.

Book Two Dimensional Direct Numerical Simulation of Opposed Jet Hydrogen Air Flames  Transition From a Diffusion to an Edge Flame

Download or read book Two Dimensional Direct Numerical Simulation of Opposed Jet Hydrogen Air Flames Transition From a Diffusion to an Edge Flame written by and published by . This book was released on 2000 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an opposed-jet diffusion flame experiment, under certain conditions, after the extinction of the diffusion flame, an edge flame can be obtained. It was reported recently in a numerical and an experimental work and is responsible for an interesting transition between two distinct burning flames (multiple solutions). Motivated by our previous numerical results, obtained with simplified kinetics and some recently reported experimental data, we performed direct numerical simulations of this transition to investigate the underlying physical mechanisms. The appearance of an edge flame after the extinction of the diffusion flame, the hysteresis reported in the experiments, and the existence of multiple vigorously burning flames at identical conditions are all captured by our simulations. Our numerical results show that, in the absence of an inert coflow curtain, when the diffusion flame disk is extinguished, an edge flame forms and propagates in the mixing layer. After the formation of this edge flame, even when the applied strain rate is reduced to the initial subcritical value, the diffusion flame disk does not reappear, because the local fluid velocity still exceeds the propagation speed of the edge flame. This hysteresis has significant implications in the common submodel that utilizes the strain rate as a parameter to determine local reignition in flamelet models; it indicates that a subcritical strain rate is not a sufficient condition for the reignition of a diffusion flame. Further investigation of this phenomenon is clearly needed to refine submodels of local extinction and reignition in the flamelet models for turbulent diffusion flames. The opposed-jet configuration provides a convenient platform to analyze edge flames which are stabilized aerodynamically in a two-dimensional geometry, thus making matching two-dimensional direct numerical simulations effective.

Book Turbulent Combustion Modeling

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Book A Reacting Jet Direct Numerical Simulation for Assessing Combustion Model Error

Download or read book A Reacting Jet Direct Numerical Simulation for Assessing Combustion Model Error written by Bryan William Reuter and published by . This book was released on 2021 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of turbulent combustion systems is a vital tool in the design and development of new technologies for power generation, transportation, defense applications, and industrial heating. In an engineering design cycle, modeling realistic device configurations in a cost- and time-effective manner is required. Due to their flexibility and computational tractability, Reynolds-Averaged Navier-Stokes (RANS)-based models are most commonly used for these purposes. However, these models are known to be inadequate. Turbulent combustion is the coupling of two multiscale, nonlinear phenomena which individually have many modeling challenges. Hence, it is unsurprising that the modeling ansatzes and simplifying assumptions which lead to these practical RANS-based models are suspect. Since RANS-based models will continue to be the dominant tool for turbulent combustion simulation, it is necessary to improve their predictivity through a better understanding of their deficiencies. The are three main modeling issues for turbulent combustion: modeling the turbulent flow, representing the chemical reactions, and capturing the interaction between the turbulence and the chemistry. Model errors can easily be conflated when attempting to quantify deficiencies in this multiphysics context where many individual models are coupled. This work introduces a new technique for isolating these errors through the creation of a flamelet-based direct numerical simulation (DNS) of a nonpremixed, temporally-evolving, planar, reacting jet. DNS is a technique which resolves all lengthscales and timescales of the turbulent flow, providing high-quality data for model development but at a significant computational cost. In the turbulent combustion context, the turbulence-chemistry interaction is also fully resolved. By closing the DNS with a steady laminar flamelet representation, a typical chemical reactions model for RANS-based simulations, RANS turbulence closures and turbulence-chemistry interaction models can be evaluated in isolation through a priori testing. Conversely, by comparing the flamelet DNS to a second DNS employing a higher-fidelity chemistry model, the flamelet closure and its impact on the flame's evolution can be interrogated directly. To obtain the DNS data, a novel algorithm for solving the variable-density, low-Mach Navier-Stokes equations extending the method of Kim, Moin, and Moser for incompressible flow is detailed here. It is a pseudospectral Fourier/B-spline collocation approach which obtains second order accuracy in time and numerical stability for large density ratios with an efficient, matrix-free, iterative treatment of the scalar equations. The a posteriori comparisons of the flamelet DNS and the complex chemistry DNS suggest the flamelet model can significantly alter the evolution of the mean state of the reacting jet; however, violations of global conservation were identified in the complex chemistry DNS. Therefore, no strong conclusions can be made about the chemical reactions model from the comparisons. Significant shortcomings have been identified in the a priori evaluations of the aforementioned RANS closures for turbulent transport, scalar mixing, and turbulence-chemistry interaction, where the flamelet model is taken to be exact. Finally, a flawed assumption in the steady laminar flamelet approach has been directly linked to nonphysical behavior of the density for small values of the scalar dissipation rate

Book Transport Phenomena in Fires

Download or read book Transport Phenomena in Fires written by Mohammad Faghri and published by WIT Press. This book was released on 2008 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Controlled fires are beneficial for the generation of heat and power while uncontrolled fires, like fire incidents and wildfires, are detrimental and can cause enormous material damage and human suffering. This edited book presents the state-of-the-art of modeling and numerical simulation of the important transport phenomena in fires. It describes how computational procedures can be used in analysis and design of fire protection and fire safety. Computational fluid dynamics, turbulence modeling, combustion, soot formation, thermal radiation modeling are demonstrated and applied to pool fires, flame spread, wildfires, fires in buildings and other examples.