EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical simulation of film cooling for gas turbine blades

Download or read book Numerical simulation of film cooling for gas turbine blades written by Jason B. Blitz and published by . This book was released on 1992 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of Flow in Turbine Blade Film Cooling

Download or read book Numerical Simulation of Flow in Turbine Blade Film Cooling written by Saravanakanthan Rajendran and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Three dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading edge Model

Download or read book Three dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading edge Model written by Douglas Stenger and published by . This book was released on 2009 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present study is a three-dimensional numerical investigation of the effectiveness of film cooling for a turbine blade leading-edge model with both a single and a three-hole cooling configuration. The model used has the same dimensions as those in the experimental investigation of Ou and Rivir (2006). It consists of a half cylinder with a flat after-body, and well represents the leading edge of a turbine blade. The single coolant hole is situated approximately at the spanwise center of the cylindrical model, and makes an angle of 21.5 degrees to the leading edge and 20 degrees to the spanwise direction. For the three-hole configuration, the center hole is positioned the same as the single hole in the single-hole configuration, with the adjacent holes located at a spanwise distance of 37.4 mm on either side of the center hole. Multi-block grids were generated using GridGen, and the flows were simulated using the flow solver Fluent. A highly clustered structured C-grid was developed around the leading edge of the model. The outer unstructured-grid domain represents the wind tunnel as used in the experimental study of Ou and Rivir (2006), and the leading-edge model is located at the center of the domain. Simulations were carried out for blowing ratios, M, ranging from 0.75 to 2.0. Turbulence was represented using the k-? shear-stress transport (SST) model, and the flow was assumed to have a free-stream turbulence intensity of 0.75%. Two types of boundary conditions were used to represent the blade wall: an adiabatic surface, and a conductive surface. The adiabatic-wall results over-predicted the film-cooling effectiveness in the far downstream region for low blowing ratios. Also, in the vicinity of the cooling hole, an increase in blowing ratio resulted in higher film cooling effectiveness than observed in the experiments. It should be noted that the steady RANS-based turbulence model used under-predicts the interaction between the coolant and mainstream flow near the cooling-pipe exit. The conductive-wall results show a much closer agreement with experimental data for film effectiveness as compared to the adiabatic-wall predictions. Simulations were also performed with higher values of turbulence intensity at the cooling-hole inlet, and these predicted the coolant-mainstream interaction and the film-cooling effectiveness more accurately. Finally, a novel concept of pulsing the coolant flow was implemented so as to achieve film-cooling effectiveness equivalent to that with constant cooling, but with reduced overall coolant air, thereby enhancing turbine efficiency. Pulsed cooling with pulsing frequency PF = 5 and 10Hz, and duty cycle DC = 50%, shows the greatest cooling effects. The three-hole cooling results indicate that the 49 mm spanwise distance used for computing the spanwise-averaged values for film-cooling effectiveness accounts for all of the film-coolant spreading provided by the single hole. Also, the neighboring cooling holes contribute little film cooling to the 49 mm spanwise distance. The most significant new finding in this work is that the inclusion of wall conductance is the main factor responsible for reproducing the experimental data.

Book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects

Download or read book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects written by Laurene D. Dobrowolski and published by . This book was released on 2009 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computations and experiments were run to study heat transfer and overall effectiveness for a simulated turbine blade leading edge. Computational predictions were run for a film cooled leading edge model using a conjugate numerical method to predict the normalized "metal" temperatures for the model. This computational study was done in conjunction with a parallel effort to experimentally determine normalized metal temperatures, i.e. overall effectiveness, using a specially designed high conductivity model. Predictions of overall effectiveness were higher than experimentally measured values in the stagnation region, but lower along the downstream section of the leading edge. Reasons for the differences between computational predictions and experimental measurements were examined. Also of interest was the validity of Taw as the driving temperature for heat transfer into the blade, and this was examined via computations. Overall, this assumption gave reasonable results except near the stagnation line. Experiments were also conducted on a leading edge with no film cooling to gain a better understanding of the additional cooling provided by film cooling. Heat flux was also measured and external and internal heat transfer coefficients were determined. The results showed roughly constant overall effectiveness on the external surface.

Book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Impingement Jet Cooling in Gas Turbines

Download or read book Impingement Jet Cooling in Gas Turbines written by R.S. Amano and published by WIT Press. This book was released on 2014-05-28 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Among the gas turbine cooling technologies, impingement jet cooling is one of the most effective in terms of cooling effectiveness, manufacturability and cost. The chapters contained in this book describe research on state-of-the-art and advanced cooling technologies that have been developed, or that are being researched, with a variety of approaches from theoretical, experimental, and CFD studies. The authors of the chapters have been selected from some of the most active researchers and scientists on the subject. This is the first to book published on the topics of gas turbines and heat transfer to focus on impingement cooling alone.

Book Numerical Simulation of Flow and Heat Transfer of Internal Cooling Passage in Gas Turbine Blade

Download or read book Numerical Simulation of Flow and Heat Transfer of Internal Cooling Passage in Gas Turbine Blade written by Guoguang Su and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A computational study of three-dimensional turbulent flow and heat transfer was performed in four types of rotating channels. The first type is a rotating rectangular channel with V-shaped ribs. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio (e/Dh) is 0.078 and the rib pitch-to-height ratio (P/e) is 10. The rotation number and inlet coolant-to-wall density ratio were varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number was varied from 10,000 to 500,000. Three channel orientations (90degrees, -135 degrees, and 135 degrees from the rotation direction) were also investigated. The second type is a rotating rectangular channel with staggered arrays of pinfins. The channel aspect ratio (AR) is 4:1, the pin length-to-diameter ratio is 2.0, and the pin spacing-to-diameter ratio is 2.0 in both the stream-wise and span-wise directions. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150 degrees with respect to the plane of rotation. In the rotating two-pass rectangular channel with 45-degree rib turbulators, three channels with different aspect ratios (AR=1:1; AR=1:2; AR=1:4) were investigated. Detailed predictions of mean velocity, mean temperature, and Nusselt number for two Reynolds numbers (Re=10,000 and Re=100,000) were carried out. The rib height is fixed as constant and the rib-pitch-to-height ratio (P/e) is 10, but the rib height-to-hydraulic diameter ratios (e/Dh) are 0.125, 0.094, and 0.078, for AR=1:1, AR=1:2, and AR=1:4 channels, respectively. The channel orientations are set as 90 degrees, the rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.13 to 0.40, respectively. The last type is the rotating two-pass smooth channel with three aspect ratios (AR=1:1; AR=1:2; AR=1:4). Detailed predictions of mean velocity, mean temperature and Nusselt number for two Reynolds numbers (Re=10,000 and Re=100,000) were carried out. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.13 to 0.40, respectively. A multi-block Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure.

Book Massively parallel Direct Numerical Simulation of Gas Turbine Endwall Film cooling Conjugate Heat Transfer

Download or read book Massively parallel Direct Numerical Simulation of Gas Turbine Endwall Film cooling Conjugate Heat Transfer written by Charles Michael Meador and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Improvements to gas turbine efficiency depend closely on cooling technologies, as efficiency increases with turbine inlet temperature. To aid in this process, simulations that consider real engine conditions need to be considered. The first step towards this goal is a benchmark study using direct numerical simulations to consider a single periodic film cooling hole that characterizes the error in adiabatic boundary conditions, a common numerical simplification. Two cases are considered: an adiabatic case and a conjugate case. The adiabatic case is for validation to previous work conducted by Pietrzyk and Peet. The conjugate case considers heat transfer in the solid endwall in addition to the fluid, eliminating any simplified boundary conditions. It also includes an impinging jet and plenum, typical of actual endwall configurations. The numerical solver is NEK5000 and the two cases were run at 504 and 128 processors for the adiabatic and conjugate cases respectively. The approximate combined time is 100,000 CPU hours. In the adiabatic case, the results show good agreement for average velocity profiles but over prediction of the film cooling effectiveness. A convergence study suggests that there may be an area of unresolved flow, and the film cooling momentum flux may be too high. Preliminary conjugate results show agreement with velocity profiles, and significant differences in cooling effectiveness. Both cases will need to be refined near the cooling hole exit, and another convergence study done. The results from this study will be used in a larger case that considers an actual turbine vane and film cooling hole arrangement with real engine conditions.

Book Numerical Simulations of Leading Edge Film Cooling Flows for Gas Tubine Airfoils

Download or read book Numerical Simulations of Leading Edge Film Cooling Flows for Gas Tubine Airfoils written by Cheryl A. Martin and published by . This book was released on 1997 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical and Experimental Study of Flow in a Gas Turbine Chamber

Download or read book Numerical and Experimental Study of Flow in a Gas Turbine Chamber written by Harbi Ahmed Daud and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis examines the cooling performance and the flow on a gas turbine blade. Numerical and experimental methods are described and implemented to assess the influence of film cooling effectiveness. A modem gas turbine blade geometry has been used. The blade is considered as a solid body with the blade cross section from hub to shroud varying with a degree of skewness. Computational Fluid Dynamics (CFD) is employed to assess blade film cooling effectiveness via simulation of the effect of varying blowing ratios (BR=l, 1.5 and 2), varying coolant fluid temperature (Tc=153 K and Tc=287.5 K), various angles of injection (35°,45° and 60°), increasing the number of cooling holes (32 and 42) and increasing the cooling holes diameter (D= 0.5 mm and 1mm). A full three-dimensional finite-volume method has been utilized in this study via the FLUENT 6.3 code with a k-s (RN G) turbulence model. Results of the CFD models were carefully validated by studying aerodynamic flow and heat transfer in turbine blade film cooling performance. A two-dimensional channel and NACA 0012 airfoil were selected to investigate turbulence effects. The solution accuracy is assessed by carrying out a sensitivity analysis of mesh type and quality effects with enhancement wall treatment and standard wall function effects also addressed for turbulent boundary layers. In this study, four different turbulence models were utilized (S-A, k-c:, (RNG), and (SST) k-w). The computations were compared with available Direct Numerical Simulation (DNS) and experimental data. Good correlation was observed when using the RNG turbulence model in comparison with other turbulence models. Film cooling effectiveness and heat transfer along a flat plate has been analyzed for four different plate materials, namely steel, carbon steel, copper and aluminum, with 30° angle of injection. The cooling holes arrangement was simulated for a hole diameter of D= 1 mm and different sections of the blade showing cooling effectiveness and heat transfer characteristic variation with increasing (BR = 0.5, 1). Furthermore a symmetrical single hole at 35° angle of injection was studied both the solid and shell plate cases. Cooling effectiveness numerical results were compared with available experimental data and the effect of material thermal properties for the solid plate on cooling performance evaluated. Numerical modeling has clearly identified that there is no benefit in reducing the number of holes as this decreases film cooling effectiveness. The experimental investigation showed the effect of increasing volumetric flow rate VO=1000, 800 and 600 cm3/min, as a term of the blowing ratio (BR) and angle of injection (35°,45° and 60°) for a modem gas turbine blade specimen using Thermal Paint Technology (TPT) and a Thermal Wind Tunnel (TWT). Both methods confirmed that the blade specimen with angle of injection of 45°, blowing ratio of BR=2 (which corresponds to 1000cm3/min), cooling holes diameter D=lmm and 42 holes developed a better film cooling effectiveness compared with the 35° and 60° cases. In addition TPT is a sufficient and relatively easy method for evaluating temperature distributions in experimental studies.

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Effects of Film Cooling on Turbine Blade Tip Flow Structures and Thermal Loading

Download or read book Effects of Film Cooling on Turbine Blade Tip Flow Structures and Thermal Loading written by Louis Edward Christensen and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbine engines are an essential technology in aviation and power generation. One of the challenges associated with increasing the efficiency of gas turbines is the thermal loading experienced by the engine components downstream of the combustors especially the high-pressure turbine blades. High temperatures and rotational velocities can cause blade failures in numerous ways such as creep or stress rupture. Technologies like film cooling are implemented in these components to lower the thermal loading and reduce the risk of failure. However, these introduce complexities into the flow which in turn increases the difficulty of predicting the performance of film cooled turbines. Accurately predicting the capabilities of these components is essential to prevent failure in gas turbine engines. Engineers use a combination of experiments and computational simulations to understand how these technologies perform and predict the operating conditions and lifespan of these components. A combined experimental and numerical program is performed on a single stage high-pressure turbine to increase understanding of film cooling in gas turbines and improve computational methods used to predict their performance. The turbine studied is a contemporary production model from Honeywell Aerospace with both cooled and uncooled turbine blades. The experimental work is performed at The Ohio State University Gas Turbine Laboratory Turbine Test Facility, a short duration facility operating at engine corrected conditions. The experiments capture heat flux, temperature, and pressure data across the entire blade, but this work will focus on the turbine blade tip data. Tip temperature data are captured using a high-speed infrared camera providing a unique data set unseen in the current literature. In addition to the experiments, transient conjugate heat transfer simulations of a single turbine passage are performed to recreate the experiments and give insight into the flow field in the tip region of the turbine blades. The experiments and simulations are conducted to provide a better understanding of the interactions of the film cooling and tip flows along with their relationship to the thermal loading on the turbine blade tip. Film cooling in the tip region adds complexity to the flow and a non-intuitive relationship exists between film cooling and thermal loading. Addition of cooling is not guaranteed to reduce the thermal loading on the blade tips. Cooling jets can displace hot gases protecting the blade, but they are also capable of shifting flow structures and trapping hot gases near the blade surface especially so in corners of the blade tips. These direct and indirect methods of altering the thermal loading open a new path to optimization where engineers consider how the coolant alters the flow in addition to forming a protective layer of cool gas. This can be done to more effectively use coolant not only in the blade tips but elsewhere on the turbine blades leading to higher engine efficiencies and more sustainable gas turbine engines.

Book Gas Turbine Blade Cooling

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Book Numerical simulation and aerothermal physics of leading edge film cooling  ASME 98 GT 504

Download or read book Numerical simulation and aerothermal physics of leading edge film cooling ASME 98 GT 504 written by A. Chernobrovkin and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Stockholm, Sweden, Jun 2-5, 1998.