EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Simulation of a Low Emissions Gas Turbine Combustor Using KIVA 2

Download or read book Numerical Simulation of a Low Emissions Gas Turbine Combustor Using KIVA 2 written by and published by . This book was released on 1996 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of a Low Emissions Gas Turbine Combustor Using KIVA II

Download or read book Numerical Simulation of a Low Emissions Gas Turbine Combustor Using KIVA II written by S. L. Yang and published by . This book was released on 1996 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of a Low Emissions Gas Turbine Combustor Using KIVA II

Download or read book Numerical Simulation of a Low Emissions Gas Turbine Combustor Using KIVA II written by S. L. Yang and published by . This book was released on 1996 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion

Download or read book Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion written by Bart Merci and published by Springer Science & Business Media. This book was released on 2011-06-20 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the outcome of the 1st International Workshop on Turbulent Spray Combustion held in 2009 in Corsica (France). The focus is on reporting the progress of experimental and numerical techniques in two-phase flows, with emphasis on spray combustion. The motivation for studies in this area is that knowledge of the dominant phenomena and their interactions in such flow systems is essential for the development of predictive models and their use in combustor and gas turbine design. This necessitates the development of accurate experimental methods and numerical modelling techniques. The workshop aimed at providing an opportunity for experts and young researchers to present the state-of-the-art, discuss new developments or techniques and exchange ideas in the areas of experimentations, modelling and simulation of reactive multiphase flows. The first two papers reflect the contents of the invited lectures, given by experts in the field of turbulent spray combustion. The first concerns computational issues, while the second deals with experiments. These lectures initiated very interesting and interactive discussions among the researchers, further pursued in contributed poster presentations. Contributions 3 and 4 focus on some aspects of the impact of the interaction between fuel evaporation and combustion on spray combustion in the context of gas turbines, while the final article deals with the interaction between evaporation and turbulence.

Book Simulation of a Gas Turbine Combustor Test Rig Using a Reactor Network Approach with Detailed Chemistry

Download or read book Simulation of a Gas Turbine Combustor Test Rig Using a Reactor Network Approach with Detailed Chemistry written by Oleg Bosyi and published by . This book was released on 2014-09-05 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master's Thesis from the year 2014 in the subject Engineering - Power Engineering, grade: 1.0, Brandenburg Technical University Cottbus, language: English, comment: Simulation eines Prufstands einer Gasturbinenbrennkammer mit einem Reaktor Netzwerk und detaillierter Chemie, abstract: Use of gas turbines as one of the most effective power generation technologies has ecological concerns caused by polluting combustion products. To reduce emissions different fuel compositions are being constantly investigated and gas turbines are developed by means of experiments or less expensive numerical simulations. Combustion processes can be modeled in computational fluid dynamics (CFD) with a good accuracy but it is time consuming and rather complicated in case of detailed chemistry. To overcome this issue a processing of CFD solution can be applied for a further building of equivalent chemical reactor networks (CRN) that allow to reduce calculation times and take minor species into account. The aim of this work is to choose a proper technique of CRN set-up and apply it for engineering tasks with the software tool 'LOGEsoft ReactorNetwork'. The first part of the thesis is devoted to investigation of existing CRN approaches, CFD processing instruments and testing and improvement of the 'LOGEsoft ReactorNetwork'. That software is successfully examined on the Sandia Flame D and a parameter study of the reactor network is carried out. The second part involves mechanism validation for methane/hydrogen mixtures and development of an equivalent reactor network for the Siemens atmospheric combustion test rig that serves as an experimental facility for enhancement of the 3rd generation dry low emission burner. The obtained CRN is validated against experimental data of NOx measurements and it showed reasonable results with deviations. A parameter study and mechanism sensitivity of the model is also conducted and some ways for the future improvement are suggested.

Book Numerical Simulation of a Low Emissions Gas Turbine Combustor Using KIVA 2

Download or read book Numerical Simulation of a Low Emissions Gas Turbine Combustor Using KIVA 2 written by and published by . This book was released on 1996 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Flow and Combustion in Advanced Gas Turbine Combustors

Download or read book Flow and Combustion in Advanced Gas Turbine Combustors written by Johannes Janicka and published by Springer Science & Business Media. This book was released on 2012-10-29 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 “Flow and Combustion in Future Gas Turbine Combustion Chambers” funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts

Book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays

Download or read book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays written by Bart Merci and published by Springer Science & Business Media. This book was released on 2014-03-27 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.

Book Numerical Simulations of Gas Turbine Combustor Flows

Download or read book Numerical Simulations of Gas Turbine Combustor Flows written by D. Lee and published by . This book was released on 1990 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational and Experimental Simulations in Engineering

Download or read book Computational and Experimental Simulations in Engineering written by Hiroshi Okada and published by Springer Nature. This book was released on 2019-11-16 with total page 1278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the latest advances, innovations, and applications in the field of computational engineering, as presented by leading international researchers and engineers at the 24th International Conference on Computational & Experimental Engineering and Sciences (ICCES), held in Tokyo, Japan on March 25-28, 2019. ICCES covers all aspects of applied sciences and engineering: theoretical, analytical, computational, and experimental studies and solutions of problems in the physical, chemical, biological, mechanical, electrical, and mathematical sciences. As such, the book discusses highly diverse topics, including composites; bioengineering & biomechanics; geotechnical engineering; offshore & arctic engineering; multi-scale & multi-physics fluid engineering; structural integrity & longevity; materials design & simulation; and computer modeling methods in engineering. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.

Book Combustion Noise

Download or read book Combustion Noise written by Anna Schwarz and published by Springer Science & Business Media. This book was released on 2009-06-17 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: November, 2008 Anna Schwarz, Johannes Janicka In the last thirty years noise emission has developed into a topic of increasing importance to society and economy. In ?elds such as air, road and rail traf?c, the control of noise emissions and development of associated noise-reduction techno- gies is a central requirement for social acceptance and economical competitiveness. The noise emission of combustion systems is a major part of the task of noise - duction. The following aspects motivate research: • Modern combustion chambers in technical combustion systems with low pol- tion exhausts are 5 - 8 dB louder compared to their predecessors. In the ope- tional state the noise pressure levels achieved can even be 10-15 dB louder. • High capacity torches in the chemical industry are usually placed at ground level because of the reasons of noise emissions instead of being placed at a height suitable for safety and security. • For airplanes the combustion emissions become a more and more important topic. The combustion instability and noise issues are one major obstacle for the introduction of green technologies as lean fuel combustion and premixed burners in aero-engines. The direct and indirect contribution of combustion noise to the overall core noise is still under discussion. However, it is clear that the core noise besides the fan tone will become an important noise source in future aero-engine designs. To further reduce the jet noise, geared ultra high bypass ratio fans are driven by only a few highly loaded turbine stages.

Book Coarse Grained Simulation and Turbulent Mixing

Download or read book Coarse Grained Simulation and Turbulent Mixing written by Fenando F. Grinstein and published by Cambridge University Press. This book was released on 2016-06-30 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.

Book The Experimental Flowfield and Thermal Measurements in an Experimental Can type Gas Turbine Combustor

Download or read book The Experimental Flowfield and Thermal Measurements in an Experimental Can type Gas Turbine Combustor written by Bronwyn Clara Meyers and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, experimental data was collected in order to create a test case that can be used to validate computational fluid dynamics (CFD) simulations and the individual models used therein for gas turbine combustor applications. In many cases, the CFD results of gas turbine combustors do not correlate well with experimental results. For this reason, there is a requirement to test the simulation method used before CFD can successfully be used for combustor design. This test case encompasses all the features of a gas turbine combustor such as a swirler, primary, secondary and dilution holes as well as cooling rings. Experiments were performed on the same combustor geometry for both non-reacting and reacting flows. The non-reacting flow experiments consisted of stereoscopic particle image velocimetry (PIV) measurements performed at various planes in the three zones of the combustor. Data was collected on planes, both in line with the holes and in between the holes of each zone. For the reacting experiments, the temperatures on the outlet plane were measured using a thermocouple rake, thus a temperature contour plot on the outlet plane was produced. Further, the combustor can was modified with passive inserts, which were tested to determine their influence on the outlet temperature distribution during reacting runs. In this set-up, the outlet velocity profiles were also measured using a Pitot tube during both non-reacting and reacting flows. In addition to the outlet temperature distribution and velocity profiles, images of the flame patterns were captured, which showed the positions of flame tongues, fluctuating flames and steady flames. Carbon burn patterns on the walls of the combustor liner were also captured. From the data collected during the reacting runs, the pattern factor, profile factor, overall pressure loss and pressure loss factor were calculated. The non-reacting experiments performed using the PIV, produced three-dimensional velocity vector fields throughout the combustor. These experiments were performed at various flow rates, which gave an indication of which features of the combustor flow were affected by the flow rate. When comparing the individual PIV images alongside one another, the temporal nature of the combustor flow was also evident. The reacting experiments revealed a hot region of exhaust gas around the outer edge of the exhaust while there was a cooler region in the centre of the outlet flow. The PIV flowfield results revealed the reason for then hot outer ring-like region was due to the path the hot gasses would take. The hot combustor gas from the primary zone diverges outwards in the secondary zone then is further forced to the outside by the dilution recirculation zone. The hot flow then leaves the combustor along the wall while the cooler air from the jets leaves the combustor in the centre. The experiments performed produced a large variety of data that can be used to validate a number of aspects of combustor simulation using CFD. The non-reacting experimental data can be used to validate the turbulence models used and to evaluate how well the flow features were modelled or captured during the non-reacting stage of the combustor simulation process. The typical flow features such as jet penetration depths and the position and size of the recirculation regions are provided for effective comparison. The thermal results presented on the outlet plane of the combustor can be used for comparison with CFD results once combustion is modelled. Copyright.

Book Industrial Gas Turbines

Download or read book Industrial Gas Turbines written by A M Y Razak and published by Elsevier. This book was released on 2007-10-31 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industrial Gas Turbines: Performance and Operability explains important aspects of gas turbine performance such as performance deterioration, service life and engine emissions. Traditionally, gas turbine performance has been taught from a design perspective with insufficient attention paid to the operational issues of a specific site. Operators are not always sufficiently familiar with engine performance issues to resolve operational problems and optimise performance.Industrial Gas Turbines: Performance and Operability discusses the key factors determining the performance of compressors, turbines, combustion and engine controls. An accompanying engine simulator CD illustrates gas turbine performance from the perspective of the operator, building on the concepts discussed in the text. The simulator is effectively a virtual engine and can be subjected to operating conditions that would be dangerous and damaging to an engine in real-life conditions. It also deals with issues of engine deterioration, emissions and turbine life. The combined use of text and simulators is designed to allow the reader to better understand and optimise gas turbine operation. - Discusses the key factors in determining the perfomance of compressors, turbines, combustion and engine controls - Explains important aspects of gas and turbine perfomance such as service life and engine emissions - Accompanied by CD illustrating gas turbine performance, building on the concepts discussed in the text

Book An Experimental and Numerical Investigation of a Gas Turbine Research Combustor

Download or read book An Experimental and Numerical Investigation of a Gas Turbine Research Combustor written by Reuben Montresor Morris and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbine engineering faces many challenges in the constant strive to increase not only the efficiency of engines but also the various stages of development and design. Development of combustors have primarily consisted of empirical or semi-empirical modelling combined with experimental investigations. Due to the associated costs and development time a need exists for an alternative method of development. Although experimental investigations can never be substituted completely, mathematical models incorporating numerical methods have shown to be an attractive alternative to conventional combustor design methods. The purpose of this study is twofold: firstly, to experimentally investigate the physical properties associated with a research combustor that is geometrically representative of practical combustors: and secondly, to use the experimental measurements for the validation of a computational fluids dynamic model that was developed to simulate the research combustor using a commercial code. The combustor was tested at atmospheric conditions and is representative of practical combustors that are characterized by a turbulent, three-dimensional flow field. The single can combustor is divided into a primary, secondary and dilution zone, incorporating film cooling air through stacked rings and an axial swirler centred around the fuel atomizer. Measurements at different air/fuel ratios captured the thermal field during operating conditions and consisted of inside gas, liner wall and exit gas temperatures. An investigation of the different combustion models available, led to the implementation of the presumed-PDF model of unpremixed turbulent reaction. The computational grid included the external and internal flow field with velocity boundary conditions prescribed at the various inlets. Two-phase flow was not accounted for with the assumption made that the liquid fuel is introduced into the combustion chamber in a gas phase. Experimental results showed that incomplete combustion occurs in the primary zone, thereby reducing the overall efficiency. Also evident from the results obtained are the incorrect flow splits at the various inlets. Evaluation of the numerical model showed that gas temperatures inside the combustor are overpredicted. However, the numerical model is capable of capturing the correct distributions of temperatures and trends obtained experimentally. This study is successful in capturing detail temperature measurements that will be used for validation purposes to assist the development of a numerical model that can accurately predict combustion properties.