Download or read book Numerical Simulation Advanced Techniques for Science and Engineering written by Ali Soofastaei and published by BoD – Books on Demand. This book was released on 2023-11-15 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation is a powerful tool used in various fields of science and engineering to model complex systems and predict their behavior. It involves developing mathematical models that describe the behavior of a system and using computer algorithms to solve these models numerically. By doing so, researchers and engineers can study the behavior of a system in detail, which may only be possible with analytical methods. Numerical simulation has many advantages over traditional analytical methods. It allows researchers and engineers to study complex systems’ behavior in detail and predict their behavior in different scenarios. It also allows for the optimization of systems and the identification of design flaws before they are built. However, numerical simulation has its limitations. It requires significant computational resources, and the accuracy of the results depends on the quality of the mathematical models and the discretization methods used. Nevertheless, numerical simulation remains a valuable tool in many fields and its importance is likely to grow as computational resources become more powerful and widely available. Numerical simulation is widely used in physics, engineering, computer science, and mathematics. In physics, for example, numerical simulation is used to study the behavior of complex systems such as weather patterns, fluid dynamics, and particle interactions. In engineering, it is used to design and optimize systems such as aircraft, cars, and buildings. In computer science, numerical simulation models and optimization algorithms and data structures. In mathematics, it is used to study complex mathematical models and to solve complex equations. This book familiarizes readers with the practical application of the numerical simulation technique to solve complex analytical problems in different industries and sciences.
Download or read book Advanced Numerical Simulation Methods written by Gernot Beer and published by CRC Press. This book was released on 2015-07-27 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This entertaining introduction to advanced numerical modeling aims to lead the reader on a journey towards theholy grail of numerical simulation, i.e. one without the requirement of mesh generation, that takes data directly from CAD programs. This hands-on book emphasizes implementation and examples of programming in a higher level language are given. Written for users of simulation software, so they can understand the benefits of this new technology and demand progress from a somewhat conservative industry. Written for software developers, so they can see that this is a technology with a big future and written for researchers, in the hope that it will attract more people to work in this field.
Download or read book Numerical Simulations of Coupled Problems in Engineering written by Sergio R. Idelsohn and published by Springer. This book was released on 2014-05-09 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
Download or read book Numerical Simulation in Physics and Engineering written by Inmaculada Higueras and published by Springer. This book was released on 2016-07-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents lecture notes from the XVI ‘Jacques-Louis Lions’ Spanish-French School on Numerical Simulation in Physics and Engineering, held in Pamplona (Navarra, Spain) in September 2014. The subjects covered include: numerical analysis of isogeometric methods, convolution quadrature for wave simulations, mathematical methods in image processing and computer vision, modeling and optimization techniques in food processes, bio-processes and bio-systems, and GPU computing for numerical simulation. The book is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques in the fields addressed here. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.
Download or read book Numerical Simulation based Design written by Xu Han and published by Springer. This book was released on 2020-01-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on numerical simulation-based design theory and methods in mechanical engineering. The simulation-based design of mechanical equipmentinvolves considerable scientific challenges including extremely complex systems,extreme working conditions, multi-source uncertainties, multi-physics coupling, andlarge-scale computation. In order to overcome these technical difficulties, this booksystematically elaborates upon the advanced design methods, covering high-fidelitysimulation modeling, rapid structural analysis, multi-objective design optimization,uncertainty analysis and optimization, which can effectively improve the designaccuracy, efficiency, multi-functionality and reliability of complicated mechanicalstructures. This book is primarily intended for researchers, engineers and postgraduate studentsin mechanical engineering, especially in mechanical design, numerical simulation andengineering optimization.
Download or read book Advanced Methods for Geometric Modeling and Numerical Simulation written by Carlotta Giannelli and published by Springer Nature. This book was released on 2019-09-18 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected contributions presented at the INdAM Workshop “DREAMS”, held in Rome, Italy on January 22−26, 2018. Addressing cutting-edge research topics and advances in computer aided geometric design and isogeometric analysis, it covers distinguishing curve/surface constructions and spline models, with a special focus on emerging adaptive spline constructions, fundamental spline theory and related algorithms, as well as various aspects of isogeometric methods, e.g. efficient quadrature rules and spectral analysis for isogeometric B-spline discretizations. Applications in finite element and boundary element methods are also discussed. Given its scope, the book will be of interest to both researchers and graduate students working in these areas.
Download or read book Numerical Modelling of Failure in Advanced Composite Materials written by Pedro P. Camanho and published by Woodhead Publishing. This book was released on 2015-08-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Modelling of Failure in Advanced Composite Materials comprehensively examines the most recent analysis techniques for advanced composite materials. Advanced composite materials are becoming increasingly important for lightweight design in aerospace, wind energy, and mechanical and civil engineering. Essential for exploiting their potential is the ability to reliably predict their mechanical behaviour, particularly the onset and propagation of failure. Part One investigates numerical modeling approaches to interlaminar failure in advanced composite materials. Part Two considers numerical modelling approaches to intralaminar failure. Part Three presents new and emerging advanced numerical algorithms for modeling and simulation of failure. Part Four closes by examining the various engineering and scientific applications of numerical modeling for analysis of failure in advanced composite materials, such as prediction of impact damage, failure in textile composites, and fracture behavior in through-thickness reinforced laminates. - Examines the most recent analysis models for advanced composite materials in a coherent and comprehensive manner - Investigates numerical modelling approaches to interlaminar failure and intralaminar failure in advanced composite materials - Reviews advanced numerical algorithms for modeling and simulation of failure - Examines various engineering and scientific applications of numerical modelling for analysis of failure in advanced composite materials
Download or read book The Proper Generalized Decomposition for Advanced Numerical Simulations written by Francisco Chinesta and published by Springer Science & Business Media. This book was released on 2013-10-08 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in scientific computing are intractable with classical numerical techniques. These fail, for example, in the solution of high-dimensional models due to the exponential increase of the number of degrees of freedom. Recently, the authors of this book and their collaborators have developed a novel technique, called Proper Generalized Decomposition (PGD) that has proven to be a significant step forward. The PGD builds by means of a successive enrichment strategy a numerical approximation of the unknown fields in a separated form. Although first introduced and successfully demonstrated in the context of high-dimensional problems, the PGD allows for a completely new approach for addressing more standard problems in science and engineering. Indeed, many challenging problems can be efficiently cast into a multi-dimensional framework, thus opening entirely new solution strategies in the PGD framework. For instance, the material parameters and boundary conditions appearing in a particular mathematical model can be regarded as extra-coordinates of the problem in addition to the usual coordinates such as space and time. In the PGD framework, this enriched model is solved only once to yield a parametric solution that includes all particular solutions for specific values of the parameters. The PGD has now attracted the attention of a large number of research groups worldwide. The present text is the first available book describing the PGD. It provides a very readable and practical introduction that allows the reader to quickly grasp the main features of the method. Throughout the book, the PGD is applied to problems of increasing complexity, and the methodology is illustrated by means of carefully selected numerical examples. Moreover, the reader has free access to the Matlab© software used to generate these examples.
Download or read book Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes written by Miguel Cerrolaza and published by Academic Press. This book was released on 2017-12-28 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. - Provides non-conventional analysis methods for modeling - Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) - Includes contributions from several world renowned experts in their fields - Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems
Download or read book Advanced Computational Methods in Science and Engineering written by Barry Koren and published by Springer Science & Business Media. This book was released on 2009-09-30 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the present book is to show, in a broad and yet deep way, the state of the art in computational science and engineering. Examples of topics addressed are: fast and accurate numerical algorithms, model-order reduction, grid computing, immersed-boundary methods, and specific computational methods for simulating a wide variety of challenging problems, problems such as: fluid-structure interaction, turbulent flames, bone-fracture healing, micro-electro-mechanical systems, failure of composite materials, storm surges, particulate flows, and so on. The main benefit offered to readers of the book is a well-balanced, up-to-date overview over the field of computational science and engineering, through in-depth articles by specialists from the separate disciplines.
Download or read book Numerical Modeling in Materials Science and Engineering written by Michel Rappaz and published by Springer Science & Business Media. This book was released on 2002-11-05 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computing application to materials science is one of the fastest-growing research areas. This book introduces the concepts and methodologies related to the modeling of the complex phenomena occurring in materials processing. It is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics, and for engineering professionals or researchers.
Download or read book An Introduction to Optimal Control Problems in Life Sciences and Economics written by Sebastian Aniţa and published by Springer Science & Business Media. This book was released on 2011-05-05 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB® programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and reference for graduate and advanced undergraduate students, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance.
Download or read book Numerical Simulation of Optical Wave Propagation with Examples in MATLAB written by Jason Daniel Schmidt and published by Society of Photo Optical. This book was released on 2010 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Simulation of Optical Wave Propagation is solely dedicated to wave-optics simulations. The book discusses digital Fourier transforms (FT), FT-based operations, multiple methods of wave-optics simulations, sampling requirements, and simulations in atmospheric turbulence.
Download or read book Numerical Simulations in Engineering and Science written by Srinivasa Rao and published by BoD – Books on Demand. This book was released on 2018-07-11 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational science is one of the rapidly growing multidisciplinary fields. The high-performance computing capabilities are utilized to solve and understand complex problems. This book offers a detailed exposition of the numerical methods that are used in engineering and science. The chapters are arranged in such a way that the readers will be able to select the topics appropriate to their interest and need. The text features a broad array of applications of computational methods to science and technology. This book would be an interesting supplement for the practicing engineers, scientists, and graduate students.
Download or read book Advanced Methodologies and Technologies in Artificial Intelligence Computer Simulation and Human Computer Interaction written by Khosrow-Pour, D.B.A., Mehdi and published by IGI Global. This book was released on 2018-09-28 with total page 1456 pages. Available in PDF, EPUB and Kindle. Book excerpt: As modern technologies continue to develop and evolve, the ability of users to adapt with new systems becomes a paramount concern. Research into new ways for humans to make use of advanced computers and other such technologies through artificial intelligence and computer simulation is necessary to fully realize the potential of tools in the 21st century. Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction provides emerging research in advanced trends in robotics, AI, simulation, and human-computer interaction. Readers will learn about the positive applications of artificial intelligence and human-computer interaction in various disciples such as business and medicine. This book is a valuable resource for IT professionals, researchers, computer scientists, and researchers invested in assistive technologies, artificial intelligence, robotics, and computer simulation.
Download or read book Computer Simulation in Physics and Engineering written by Martin Oliver Steinhauser and published by Walter de Gruyter. This book was released on 2012-12-06 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. Molecular dynamics computes a molecule's reactions and dynamics based on physical models; Monte Carlo uses random numbers to image a system's behaviour when there are different possible outcomes with related probabilities. The work conveys both the theoretical foundations as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.
Download or read book Numerical Simulation in Hydraulic Fracturing Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.