EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quasi Dimensional Simulation of Spark Ignition Engines

Download or read book Quasi Dimensional Simulation of Spark Ignition Engines written by Alejandro Medina and published by Springer Science & Business Media. This book was released on 2013-08-20 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the simulations developed in research groups over the past years, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines provides a compilation of the main ingredients necessary to build up a quasi-dimensional computer simulation scheme. Quasi-dimensional computer simulation of spark ignition engines is a powerful but affordable tool which obtains realistic estimations of a wide variety of variables for a simulated engine keeping insight the basic physical and chemical processes involved in the real evolution of an automotive engine. With low computational costs, it can optimize the design and operation of spark ignition engines as well as it allows to analyze cycle-to-cycle fluctuations. Including details about the structure of a complete simulation scheme, information about what kind of information can be obtained, and comparisons of the simulation results with experiments, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines offers a thorough guide of this technique. Advanced undergraduates and postgraduates as well as researchers in government and industry in all areas related to applied physics and mechanical and automotive engineering can apply these tools to simulate cyclic variability, potentially leading to new design and control alternatives for lowering emissions and expanding the actual operation limits of spark ignition engines

Book Modelling Spark Ignition Combustion

Download or read book Modelling Spark Ignition Combustion written by P. A. Lakshminarayanan and published by Springer Nature. This book was released on with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spark Ignition Engine Fuel Economy Control Optimization

Download or read book Spark Ignition Engine Fuel Economy Control Optimization written by Thomas Trella and published by . This book was released on 1979 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Annual Index abstracts of SAE Technical Papers

Download or read book Annual Index abstracts of SAE Technical Papers written by and published by . This book was released on 2006 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemical Kinetic Modelling of Autoignition Under Conditions Relevant to Knock in Spark Ignition Engines

Download or read book Chemical Kinetic Modelling of Autoignition Under Conditions Relevant to Knock in Spark Ignition Engines written by Hakan Serhad Soyhan and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The phenomenon called the ''engine knock'' is an abnonnal combustion mode inspark ignition (SI) engines. it might lead to very high peak pressure in the cylinderand serious damages in engines. Knock limits the compression ratio of the ~ngine. The higher compression ratiomeans the higher fuel conversion efficiency of the engine. it also means highercylinder pressure and thereby higher gas temperature which can cause knock becauseof shorter ignition delay time. Increasing compression ratio is the simplest strategyfor increasing the efficiency of combustion, so a more detailed understanding of theprocesses goveming knock is important.it is generally accepted that knock is initiated by autoignition in the unbumed gasmixture as a result of compression due to the f1ame front propagation and the piston movement. Auto ignition can be defined as spontaneous ignition of some part of thecharge in the cylinder. The autoignition is may cause an extremely rapid chemicalenergy release. it causes a high local pressure and propagation of pressure waveswith high amplitude across the combustion chamber. The rapid rise in pressure andthe vibration of the resultant pressure wave across the combustion chamber cause erosion of the piston, piston rings and head gaskets. Known measures to avoid theoccurrence of engine knock cause either environmental problems, for example theusage of MTBE or reduce the engine thennal efficiency , for example lowcompression ratio, high swirl or early ignition timing. Because of this, the occurrenceof knock was subject of continuous public and industrial research.A detailed investigation of the combustion processes in intemal combustion engines is necessary for the improvement of engine technology .Chemical kinetic model ofthe combustion process implemented into the computational f1uid dynamic sapplications for the prediction of gas f1ow in the combustion chamber provides anefficient tool in tenns of time and cost for the investigation and improvement of the combustion process.The software tools for the modeling of combustion processes in combustion devicesrequire the reduction of the kinetic model to a limited number of species. Since the engine geometry is very complex, the performnnance of commercial software productsfor combustion device optimization decreases considerably if the number of species exceeds about 10. Consequently, a variety of methods in chemical kinetic modelingare needed to construct a reaction mechanism for a complex fuel such as PRF and toreduce it to a low number of capable species without a loss of information that mightbe important for the accuracy of the calculations. One method having the following steps is The generation of a ''detailed reaction mechanism'',The construction of the ''skeletal mechanism'',The final reduction of the reaction mechanism using Quasi Steady State Approximations (QSSA).This study concentrates on the construction of the problem oriented reduced mechanism. A method for automatic reduction of detailed kinetic to reduced mechanisms for complex fuels is proposed. The method is based on the simultaneoususe of sensitivity, reaction-f1ow and lifetime analyses. The sensitivity analysis detects species that the overall combustion process is sensitive on. Small in accuracies, in calculating these species, result in large errors in the characteristic behavior of the chernical scheme. Species, not relevant for the occurrence of autoignition in the end-gas, are defined as redundant. The automatic detection of there dundant species is done by means of an analysis of the reaction f1ows from and towards the most sensitive species, the fuel, the oxidizer and the final products. Theyare identified and eliminated for different pre-set levels of minimum reaction flow and sensitivity to generate a skeletal mechanism. The resulting skeletal mechanism is investigated with lifetime analysis to get the final reduced mechanism. A measure ofspecies lifetimes is taken from the diagonal elements of the Jacobian matrix of the chernical source terms. The species with the lifetime shorter than and mass-fractionIess than specified limits are assumed to be in steady state and selected for removalfrom the skeletal mechanism. The reduced mechanism is valid for the parameter range of initial and boundary values that the analysis has been performed for.The proposed reduction method is exemplified on a detailed reaction mechanism foriso-octane/n-heptane rnixtures. The gas-phase chernistry is analyzed in the end gas of an SI engine, using a two-zone model with conditions chosen relevant for engine knock. Comparing results obtained from the skeletal and the reduced mechanism swith results from the detailed mechanism shows the accuracy of the resulting mechanisms. it is shown that the error in the mechanisms increase with increasingpre-set Ievels of reduction. This is visualized by the help of the predicted crank angle degree at which auto ignition in the end gas of the engine occurs.The reduced mechanism is used for investigation of the modeling of the auto ignitionin the SI engines. The effects of engine operator parameters such as compression ratio, spark advance, fuel equivalence ratio and engine speed on autoignition onsettime have been studied.This work shows that it is possible to achieve a simplified reaction mechanism withgood agreement to the original mechanism by the reduction method. Fundamental knowledge about the detailed mechanism is not necessary to apply the method. Theprocedure used for reduction is fully automatic and provides a fast technique togenerate the problem oriented reduced mechanisms.

Book Chemical Kinetics in Combustion and Reactive Flows  Modeling Tools and Applications

Download or read book Chemical Kinetics in Combustion and Reactive Flows Modeling Tools and Applications written by V. I. Naoumov and published by Cambridge University Press. This book was released on 2019-08-22 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces advanced mathematical tools for the modeling, simulation, and analysis of chemical non-equilibrium phenomena in combustion and flows, following a detailed explanation of the basics of thermodynamics and chemical kinetics of reactive mixtures. Researchers, practitioners, lecturers, and graduate students will find this work valuable.

Book Numerical Simulations

    Book Details:
  • Author : Lutz Angermann
  • Publisher : BoD – Books on Demand
  • Release : 2010-12-30
  • ISBN : 9533071532
  • Pages : 454 pages

Download or read book Numerical Simulations written by Lutz Angermann and published by BoD – Books on Demand. This book was released on 2010-12-30 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation.

Book Computational Optimization of Internal Combustion Engines

Download or read book Computational Optimization of Internal Combustion Engines written by Yu Shi and published by Springer Science & Business Media. This book was released on 2011-06-22 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.

Book Numerical and Experimental Studies on Combustion Engines and Vehicles

Download or read book Numerical and Experimental Studies on Combustion Engines and Vehicles written by Paweł Woś and published by BoD – Books on Demand. This book was released on 2020-11-26 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: The matters discussed and presented in the chapters of this book cover a wide spectrum of topics and research methods commonly used in the field of engine combustion technology and vehicle functional systems. This book contains the results of both computational analyses and experimental studies on jet and reciprocating combustion engines as well heavy-duty onroad vehicles. Special attention is devoted to research and measures toward preventing the emission of harmful exhaust components, reducing fuel consumption or using unconventional methods of engine fueling or using renewable and alternative fuels in different applications. Some technical improvements in design and control of vehicle systems are also presented.

Book Assessment of Fuel Economy Technologies for Light Duty Vehicles

Download or read book Assessment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2011-06-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Book Analysis of Variability and Injection Optimization of a Compression Ignition Engine

Download or read book Analysis of Variability and Injection Optimization of a Compression Ignition Engine written by Ming Fang and published by . This book was released on 2009 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Injection optimization for cylinder-to-cylinder variations elimination and NOx reduction is also investigated in this work. Fuel bank control and cylinder-by-cylinder control are considered for the optimization. Three types of design of experiments are created to extensively study the benefits of these two control strategies. A fault injection scenario is also included. It is found that fuel bank and cylinder-by-cylinder control are effective in NOx reduction. Cylinder-by-cylinder control shows advantages of balancing variations across cylinders and maintaining benefits in reducing NOx at fault injection mode as compared to the fuel bank control.

Book Automotive Spark Ignited Direct Injection Gasoline Engines

Download or read book Automotive Spark Ignited Direct Injection Gasoline Engines written by F. Zhao and published by Elsevier. This book was released on 2000-02-08 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.

Book Gasoline Compression Ignition Technology

Download or read book Gasoline Compression Ignition Technology written by Gautam Kalghatgi and published by Springer Nature. This book was released on 2022-01-17 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on gasoline compression ignition (GCI) which offers the prospect of engines with high efficiency and low exhaust emissions at a lower cost. A GCI engine is a compression ignition (CI) engine which is run on gasoline-like fuels (even on low-octane gasoline), making it significantly easier to control particulates and NOx but with high efficiency. The state of the art development to make GCI combustion feasible on practical vehicles is highlighted, e.g., on overcoming problems on cold start, high-pressure rise rates at high loads, transients, and HC and CO emissions. This book will be a useful guide to those in academia and industry.

Book Numerical Modeling of Gasoline Direct Injection Spark Ignition Engines During Cold start

Download or read book Numerical Modeling of Gasoline Direct Injection Spark Ignition Engines During Cold start written by Arun Cherumuttathu Ravindran and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing a profound understanding of the combustion characteristics of the cold-start phase of a Direct Injection Spark Ignition (DISI) engine is critical to meeting the increasingly stringent emissions regulations. Computational Fluid Dynamics (CFD) modeling of gasoline DISI combustion under normal operating conditions has been discussed in detail using both the detailed chemistry approach and flamelet models (e.g., the G-Equation). However, there has been little discussion regarding the capability of the existing models to capture DISI combustion under cold-start conditions. Accurate predictions of cold-start behavior involves the efficient use of multiple models - spray modeling to capture the split injection strategies, models to capture the wall-film interactions, ignition modeling to capture the effects of retarded spark timings, combustion modeling to accurately capture the flame front propagation, and turbulence modeling to capture the effects of decaying turbulent kinetic energy. The retarded spark timing helps to generate high heat flux in the exhaust for a rapid catalyst light-off of the after-treatment system during cold-start. However, the adverse effect is a reduced turbulent flame speed due to decaying turbulent kinetic energy. Accordingly, developing an understanding of the turbulence-chemistry interactions is imperative for accurate modeling of combustion under cold-start conditions.This study introduces a modified version of the G-Equation combustion model called the GLR model (G-Equation for Lower Reynolds number regimes) that exhibits improved performance under cold-start conditions. The model attempts to estimate the turbulent flame speed based on the local conditions of fuel concentration and turbulence intensity. The local conditions and the associated turbulent-chemistry interactions are studied by tracking the flame front on the Borghi-Peters regime diagram. To accurately model the DISI combustion process, it is important to account for the effects of the spark energy discharge process. In this work, an ignition model is presented that is compatible with the G-Equation combustion model, and which accounts for the effects of plasma expansion and local mixture properties such as turbulence and the equivalence ratio on the early flame kernel growth. The model is referred to as the Plasma Velocity on G-Surface (PVG) model, and it uses the G-surface to capture the kernel growth. The model derives its theory from the DPIK model and applies its concepts onto an Eulerian framework, thereby removing the need for Lagrangian particles to track the kernel growth. Finally, a methodology of using machine learning (ML) techniques in combination with 3D CFD modeling to optimize the cold-start fast-idle phase of a DISI engine is presented. The optimization process implies the identification of the range of operating parameters, that will ensure the following criteria under cold-start conditions: (1) a fixed IMEP of 2 bar (BMEP of 0 bar), (2) a stoichiometric exhaust equivalence ratio (based on carbon-to-oxygen atoms) to ensure the efficient operation of the after-treatment system, (3) enough exhaust heat flux to ensure a rapid light-off of the after-treatment system, and (4) acceptable NOx and HC emissions. Gaussian Process Regression (GPR)-based ML models are employed to make predictions about DISI cold-start behavior with acceptable accuracy and a substantially reduced computational time.

Book Synchronous  Simultaneous Optimization of Ignition Timing and Equivalence Ratio in a Gas fueled Spark ignition Engine

Download or read book Synchronous Simultaneous Optimization of Ignition Timing and Equivalence Ratio in a Gas fueled Spark ignition Engine written by Matthew Lee Franklin and published by . This book was released on 1996 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: