EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Modeling of Upward Flame Spread and Burning of Wavy Thin Solids

Download or read book Numerical Modeling of Upward Flame Spread and Burning of Wavy Thin Solids written by Erik James Stalcup and published by . This book was released on 2015 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flame spread over solid fuels with simple geometries has been extensively studied in the past, but few have investigated the effects of complex fuel geometry. This study uses numerical modeling to analyze the flame spread and burning of wavy (corrugated) thin solids and the effect of varying the wave amplitude. Sensitivity to gas phase chemical kinetics is also analyzed. Fire Dynamics Simulator is utilized for modeling. The simulations are two-dimensional Direct Numerical Simulations including finite-rate combustion, first-order pyrolysis, and gray gas radiation. Changing the fuel structure configuration has a significant effect on all stages of flame spread. Corrugated samples exhibit flame shrinkage and break-up into flamelets, behavior not seen for flat samples. Increasing the corrugation amplitude increases the flame growth rate, decreases the burnout rate, and can suppress flamelet propagation after shrinkage. Faster kinetics result in slightly faster growth and more surviving flamelets. These results qualitatively agreement with experiments.

Book Material Flammability and Burning Behavior of Thin Solids in Concurrent Forced Flow in Microgravity

Download or read book Material Flammability and Burning Behavior of Thin Solids in Concurrent Forced Flow in Microgravity written by Chengyao Li and published by . This book was released on 2020 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Material flammability and burning behaviors of thin solids in concurrent flows in normal and microgravity are studied using a previously-developed transient numerical model. The model consists of an unsteady gas phase and an unsteady solid phase. The gas phase solves full Navier-Stokes equations including mass, momentum, energy and species equations, using Direct Numerical Simulation. A one-step, second-order overall Arrhenius reaction is adopted. Gas phase radiation is considered by solving the radiation transfer equation with a discrete ordinates SN approximation. In the solid phase, conservation equations of the energy and mass are solved. A cotton-fiberglass-blend fabric is considered as the solid material in this research. Test-based two-step decomposition reactions are implemented for the solid pyrolysis. In this work, the following efforts are made: (1) enhancement to the Adaptive Mesh Refinement (AMR) scheme and (2) development of a two-dimensional version of the program (based on the original three-dimensional program). The first effort allows the program to simulate and resolve multiple flames spreading along the surface of the solid combustible. The second effort dramatically reduces the computational cost when simulating flame spread over wide samples. The model is applied to simulate three scenarios: (1) upward flame spread in normal gravity, (2) purely-forced concurrent flow flame spread over a large and wide sample (41 cm wide 94 cm long), and (3) purely-forced concurrent flow flame spread over a moderate size (5 cm wide, 30 cm long) sample. In the first scenario, upward flame spread in normal gravity, the simulations follow the dimension/configuration of a standard test, NASA-STD-6001 Test #1. This test is the current ground-based screening test for materials that are intended for use in space exploration. The tested sample is 5 cm wide and 30 cm long. In the simulation, ambient pressure is the main parameter. At low pressures, the conventional upward flame spread process is observed. As the pressure increases, a special flame splitting phenomenon is observed. The splitting process is presented in details using the solid and gas profiles. It is concluded that the two-step solid pyrolysis is the cause of this special phenomenon. For the second and third scenarios, simulations are performed to support an on-going NASA project Saffire, which consists of a series of large-scale microgravity burning experiments. Concurrent flow speeds at 20 and 25 cm/s are simulated for both large and moderate sized samples. The results of both Saffire experiments and the simulations are presented and compared in detail. The numerical results are also used to interpret the phenomena observed in the experiments. For the wide sample (scenario 2), a parametric study on the sample width (5-41 cm) is conducted, and additional simulations (using the two-dimensional version of the program) at various flow conditions (different flow speeds, ambient pressures, and oxygen percentages) are performed. Based on the simulation results, analytical analysis is conducted and formulations are proposed for flame spread rate and flame length. The proposed formulation for flame spread rate is evaluated using literature data of microgravity experiments and shows seasonable performance.

Book Numerical Modeling of Turbulent Combustion and Flame Spread

Download or read book Numerical Modeling of Turbulent Combustion and Flame Spread written by Zhenghua Yan and published by . This book was released on 1999 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified k-e model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall surface temperature, char depth, radiation and convection heat fluxes, and heat release rate were calculated and compared with experimental measurements. In addition to provide comprehensive data for comparison, experiments on room corner fire growth were undertaken, where the gas temperature, solid fuel surface temperature, radiative heat flux, char depth and heat release rate were all measured.

Book Numerical Modeling of Flame Spread Over Spherical Solid Fuel Under Low Speed Flow in Microgravity

Download or read book Numerical Modeling of Flame Spread Over Spherical Solid Fuel Under Low Speed Flow in Microgravity written by Makoto Endo and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flame spread over solid fuel presents distinctive characteristics in reduced gravity, especially when the forced flow velocity is low. The lack of buoyancy allows a blue, dim flame to sustain where the induced velocity would otherwise blow it off. At such low velocities, a quenching limit exists where the soot content is low and the effect of radiative heat loss becomes important. The objective of this study is to establish a high fidelity numerical model to simulate the growth and extinction of flame on solid fuels in a reduced gravity environment. The great importance of the spectral dependency of the gas phase absorption and emission were discovered through the model development and therefore, Statistical Narrow-Band Correlated-k (SNB-CK) spectral model was implemented. The model is applied to an experimental configuration from the recent space experiment, Burning And Suppression of Solids (BASS) project conducted aboard the International Space Station. A poly(methyl methacrylate) (PMMA) sphere (initial diameter of 2cm) was placed in a small wind tunnel (7.6cm x 7.6cm x 17cm) within the Microgravity Science Glovebox where flow speed and oxygen concentration were varied. Data analysis of the BASS experiment is also an important aspect of this research, especially because this is the first space experiment that used thermally thick spherical samples. In addition to the parameters influencing the flammability of thin solids, the degree of interior heat-up becomes an important parameter for thick solids. For spherical samples, not only is the degree of internal heating constantly changing, but also the existence of stagnation point, shoulder, and wake regions resulting in a different local flow pattern, hence a different flame-solid interaction. Parametric studies using the numerical model were performed against (1) chemical reaction parameters, (2) forced flow velocity, (3) oxygen concentration and (4) amount of preheating (bulk temperature of the solid fuel). Flame Spread Rate (FSR) was used to evaluate the transient effect and maximum flame temperature, standoff distance and radiative loss ratio were used to evaluate the spontaneous response of the gas phase to understand the overall response of the burning solid fuel. After evaluating the individual effect of each parameter, the efficacy of each parameter was compared. Selected results of this research are:[1]Experimental data from BASS and numerical simulation both showed that within the time periodbetween ignition until the flame tip reaches the shoulder of the sample, the flame length and timehave almost a linear relation.[2]Decreasing forced flow velocity increases the radiative loss ratio whereas decreasing oxygen molefraction decreases the radiative loss ratio. This finding must be considered in the effort to replicatethe behavior of flame spread over thick solid fuels in microgravity on earth.[3]Although the standoff distance will increase when the forced flow velocity is decreased as well aswhen the oxygen mole fraction is decreased, the forced flow velocity has a much stronger effect onthe standoff distance than the oxygen mole fraction.[4]Unlike the previous two comparisons, the effect of forced flow velocity and oxygen mole fraction onthe maximum flame temperature was at similar level, reduction of either parameter would result inlowering the maximum flame temperature.[5]The effect of preheating on the flame spread rate becomes stronger when either the oxygen flowrate or forced flow velocity becomes larger. Depending on which element is more important, we candistinguish oxygen flow rate driven flame spread from preheating driven flame spread. Findings of this research are being utilized in the design of the upcoming space experiment, Growth and Extinction Limits of solid fuel (GEL) project. This research is supported by the National Aeronautics and Space Administration (NASA). This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University and the Ohio Supercomputer Center.

Book Upward Flame Spread Over Thin Solids in Partial Gravity

Download or read book Upward Flame Spread Over Thin Solids in Partial Gravity written by Ioan I. Feier and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental Upward Flame Spread Over Thin Solids in Partial Gravity

Download or read book Experimental Upward Flame Spread Over Thin Solids in Partial Gravity written by Ioan I. Feier and published by . This book was released on 2001 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Upward Flame Spread Over a Thin Solid in Reduced Gravity

Download or read book Upward Flame Spread Over a Thin Solid in Reduced Gravity written by Ching-Biau Jiang and published by . This book was released on 1995 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Numerical Model of Opposed Flow Flame Spread Over Thin Solid Fuels

Download or read book A Numerical Model of Opposed Flow Flame Spread Over Thin Solid Fuels written by Amit Kumar (Ph. D.) and published by . This book was released on 2004 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Model of Concurrent Flow Flame Spread Over a Thin Solid Fuel

Download or read book A Model of Concurrent Flow Flame Spread Over a Thin Solid Fuel written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-17 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: A numerical model is developed to examine laminar flame spread and extinction over a thin solid fuel in lowspeed concurrent flows. The model provides a more precise fluid-mechanical description of the flame by incorporating an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point. Parabolic equations are used to treat the downstream flame, which has a higher flow Reynolds number. The parabolic and elliptic regions are coupled smoothly by an appropriate matching of boundary conditions. The solid phase consists of an energy equation with surface radiative loss and a surface pyrolysis relation. Steady spread with constant flame and pyrolysis lengths is found possible for thin fuels and this facilitates the adoption of a moving coordinate system attached to the flame with the flame spread rate being an eigen value. Calculations are performed in purely forced flow in a range of velocities which are lower than those induced in a normal gravity buoyant environment. Both quenching and blowoff extinction are observed. The results show that as flow velocity or oxygen percentage is reduced, the flame spread rate, the pyrolysis length, and the flame length all decrease, as expected. The flame standoff distance from the solid and the reaction zone thickness, however, first increase with decreasing flow velocity, but eventually decrease very near the quenching extinction limit. The short, diffuse flames observed at low flow velocities and oxygen levels are consistent with available experimental data. The maximum flame temperature decreases slowly at first as flow velocity is reduced, then falls more steeply close to the quenching extinction limit. Low velocity quenching occurs as a result of heat loss. At low velocities, surface radiative loss becomes a significant fraction of the total combustion heat release. In addition, the shorter flame length causes an increase in the fraction of conduction downstream compared to conduction to the fuel. The...

Book An Embedded Upward Flame Spread Model Using 2D Direct Numerial Simulations

Download or read book An Embedded Upward Flame Spread Model Using 2D Direct Numerial Simulations written by Wei Xie and published by . This book was released on 2012 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fully coupled 2D fluid-solid direct numerical simulation (DNS) approach is developed to simulate fluid-solid heat and mass transfer processes using Cartesian grids. The solid geometry is identified using level set based embedded interface method. The flow field is described by the 2D Navier Stokes equations using a vorticity-streamfunction approach. First a fluid-solid coupling formulation for the thermal and momentum fields is developed that is robust, computationally efficient and second-order accurate. Solutions for several example problems are presented for flow over stationary and moving cylinders to bench mark the current approach. Heat transfer for an isolated cylinder and two cylinders in series are then examined to explore the Nusselt number dependence on cylinder spacing and unsteady conjugate heat transfer processes. Secondly, the methodology is extended to simulate flame spread over poly(methyl methacrylate) (PMMA) at different angles of inclination. Comparison of simulations and experimental easurements are conducted for flame spread rates. Results show that the heat flux to the preheating region varies considerably in time - contradicting often employed assumptions used in established flame spread theories. Accounting for the time dependent behaviour is essential in accurate predictions of flame spread, however, a universal characterization in terms of easily defined parameters is not found. Alternatively, a reaction progress variable based embedded flame model is developed using mixture fraction, total enthalpy and surface temperature. State maps of the gas-phase properties and surface heat flux are constructed and stored in pre-computed lookup tables. The resulting model provides a computationally efficient and a local formulation to determine the flame heat flux to the surface resulting in excellent agreement to DNS and experiments for predictions of flame spread rate and position of the pyrolysis front.

Book Applied Mechanics Reviews

Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1989 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Publications of the National Institute of Standards and Technology     Catalog

Download or read book Publications of the National Institute of Standards and Technology Catalog written by National Institute of Standards and Technology (U.S.) and published by . This book was released on 1991 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Opposed Flow Flame Spread Over Solid Fuels in Different Burning Regimes

Download or read book Opposed Flow Flame Spread Over Solid Fuels in Different Burning Regimes written by Luca Carmignani and published by . This book was released on 2019 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several aspects of opposed-flow flame spread are experimentally investigated because of their relevance in fire safety studies. Different burning regimes based on the intensity of the opposed flow velocity are identified for acrylic fuels. In downward flame spread, where the flow around a flame is only naturally induced by gravity, the spread rate is highly dependent on fuel size and geometry. The fuel cross-sectional shape is experimentally varied, and a formula which takes into account geometrical effects is proposed by extending previous solutions for two-dimensional flames. The burning region of a solid fuel shows a consistent slope due to the competition between flame spread and surface regression. The angle at the vertex of the pyrolysis region, called burn angle, can be used to indirectly calculate the fuel burning rate. The burn angle depends on fuel thickness; a numerical model and a scale analysis are used to explore the reasons for this behavior. Next, the effect of a forced flow is investigated. The extreme case of blow-off extinction over thin fuels is considered, with flames extinguishing at locations determined by the flow velocity. Results suggest that the interaction between fuel and flow field is more important than the dependence on fuel thickness. The evolution of flame structure and pyrolysis also appear to be driven by flow interactions. A scale analysis is used to explore these dependencies. Finally, previous microgravity experiments are used to explore differences and similarities with ground-based results. By suppressing the buoyant flow, flame radiation becomes essential for the flame spread process. The experimental conditions are simulated numerically to describe the importance of a developing boundary layer in this regime. A numerical parametric study of the radiative emission of flames in microgravity, inspired by the experimental data, shows its dependence on flame area, mass burning rate and flame temperature by changing the burning conditions. For these small flames, soot does not seem to dominate flame radiation, although its generation increases with fuel thickness, oxygen concentration and flow velocity. The experiments in microgravity considered in this work showed flame extinction in a quiescent environment. However, two acrylic cylinders at higher oxygen concentrations from a previous investigation can burn vigorously. To clarify whether these flames are stable, a scale analysis is used to study the influence of surface curvature on radiation losses.

Book Flame Spread and Extinction Over Solids in Buoyant and Forced Concurrent Flows  Model Computations and Comparison with Experiments

Download or read book Flame Spread and Extinction Over Solids in Buoyant and Forced Concurrent Flows Model Computations and Comparison with Experiments written by Sheng-Yen Hsu and published by . This book was released on 2009 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed three-dimensional model for steady flame spread over thin solids in concurrent flows is used to compare with existing experiments in both buoyant and forced flows. This work includes (1) several improvements in the quantitatively predictive capability of the model, (2) a sensitivity study of flame spread rate on input parameters, (3) introduction of flame radiation into the buoyant-flow computations and (4) quantitative comparisons with two sets of buoyant upward spread experiments using cellulosic samples and a comparison with forced downwind spread tests using wider cellulosic samples. In additional to sample width and thickness, the model computation and experimental comparison cover a substantial range of environmental parameters such as oxygen percentage, pressure, velocity and gravity that are of interest to the applications to space exploration. In the buoyant-flow comparison, the computed upward spread rates quite favorably agree with the experimental data. The computed extinction limits are somewhat wider than the experimental limits based on only one set of older test data (the only one available). Comparison of the flame thermal structure (also with this set of older data) shows that the computed flame is longer and there is structure difference in the flame base zone. This is attributed to the sample cracking phenomenon near the fuel burnout, a mechanism not treated in the model. Comparison in forced concurrent flows shows that the predicted spread rates are lower than the experimental ones if the flames are short but higher than the experimental ones if the flames are long. It is believed that the experimental flames may have not fully reached the steady states at the end of 5-second drop. The effect of gas-phase kinetic rate on concurrent flame spread rates is investigated through the variation of the pre-exponential factor. It is found that flames in forced flow are less sensitive to the change of kinetics than flames in buoyant flow; and narrow samples are more sensitive to the change of kinetics compared with wide samples. The rate of chemical kinetics affects the flame spread rates primarily through two mechanisms: the amount of un-burnt fuel vapors escaping the reaction zone and the induced velocity variation through flame temperature change in the case of the buoyant flames.

Book Microgravity Combustion

Download or read book Microgravity Combustion written by Howard D. Ross and published by Elsevier. This book was released on 2001-09-03 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to understanding combustion, the burning of a substance that produces heat and often light, in microgravity environments-i.e., environments with very low gravity such as outer space. Readers are presented with a compilation of worldwide findings from fifteen years of research and experimental tests in various low-gravity environments, including drop towers, aircraft, and space.Microgravity Combustion is unique in that no other book reviews low- gravity combustion research in such a comprehensive manner. It provides an excellent introduction for those researching in the fields of combustion, aerospace, and fluid and thermal sciences. * An introduction to the progress made in understanding combustion in a microgravity environment* Experimental, theoretical and computational findings of current combustion research* Tutorial concepts, such as scaling analysis* Worldwide microgravity research findings

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1996 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: