EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Modeling of Seismic Wave Propagation

Download or read book Numerical Modeling of Seismic Wave Propagation written by Johan O. A. Robertsson and published by SEG Books. This book was released on 2012 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.

Book Numerical Modeling of Seismic Wave Propagation

Download or read book Numerical Modeling of Seismic Wave Propagation written by K. R. Kelly and published by . This book was released on 1999 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Modeling of Seismic Wave Propagation

Download or read book Numerical Modeling of Seismic Wave Propagation written by H. Igel and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Seismic Wave Propagation

Download or read book Fundamentals of Seismic Wave Propagation written by Chris Chapman and published by Cambridge University Press. This book was released on 2004-07-29 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.

Book Seismic Waves

    Book Details:
  • Author : Masaki Kanao
  • Publisher : BoD – Books on Demand
  • Release : 2019-11-20
  • ISBN : 1789853273
  • Pages : 121 pages

Download or read book Seismic Waves written by Masaki Kanao and published by BoD – Books on Demand. This book was released on 2019-11-20 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of seismic wave research lies not only in our ability to understand and predict earthquakes and tsunamis, but it also reveals information on the Earth's composition and features in much the same way as it led to the discovery of Mohorovicic's discontinuity. As our theoretical understanding of the physics behind seismic waves has grown, physical and numerical modeling have greatly advanced and now augment applied seismology for better prediction and engineering practices. This book demonstrates the latest techniques and advances in seismic wave analysis from a theoretical approach, data acquisition and interpretation, to analyses and numerical simulations, as well as research applications. The major topics in this book cover aspects on seismic wave propagation, characteristics of their velocities and attenuation, deformation process of the Earth's medium, seismic source process and tectonic dynamics with relating observations, as well as propagation modeling of seismic waves.

Book Seismic Modeling and Imaging with the Complete Wave Equation

Download or read book Seismic Modeling and Imaging with the Complete Wave Equation written by Ralph Phillip Bording and published by . This book was released on 1999 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Encyclopedia of Solid Earth Geophysics

Download or read book Encyclopedia of Solid Earth Geophysics written by Harsh Gupta and published by Springer Science & Business Media. This book was released on 2011-06-29 with total page 1579 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of physics and forms the intrinsic framework, which other allied disciplines utilize for more specific investigations. The first edition of the Encyclopedia of Solid Earth Geophysics was published in 1989 by Van Nostrand Reinhold publishing company. More than two decades later, this new volume, edited by Prof. Harsh K. Gupta, represents a thoroughly revised and expanded reference work. It brings together more than 200 articles covering established and new concepts of Geophysics across the various sub-disciplines such as Gravity, Geodesy, Geomagnetism, Seismology, Seismics, Deep Earth Processes, Plate Tectonics, Thermal Domains, Computational Methods, etc. in a systematic and consistent format and standard. It is an authoritative and current reference source with extraordinary width of scope. It draws its unique strength from the expert contributions of editors and authors across the globe. It is designed to serve as a valuable and cherished source of information for current and future generations of professionals.

Book Numerical Modeling of Global Seismic Wave Propagation

Download or read book Numerical Modeling of Global Seismic Wave Propagation written by Heiner Igel and published by . This book was released on 2000 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Seismology

    Book Details:
  • Author : Heiner Igel
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198717407
  • Pages : 340 pages

Download or read book Computational Seismology written by Heiner Igel and published by Oxford University Press. This book was released on 2017 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.

Book Full Seismic Waveform Modelling and Inversion

Download or read book Full Seismic Waveform Modelling and Inversion written by Andreas Fichtner and published by Springer Science & Business Media. This book was released on 2010-11-16 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.

Book Numerical Modeling of Seismic Wave Propagation in Underground Mines

Download or read book Numerical Modeling of Seismic Wave Propagation in Underground Mines written by Xin Wang and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The phenomenon of rockburst damage localization, which is not well understood, has been observed in deep underground mines. Analysis of seismic wave propagation in underground mines is of great interest for improved understanding of the dynamic rock failure problem. This thesis aims at making a contribution for improving understanding of the seismic wave propagation in deep underground mines. Advanced numerical modeling tools are used and new modeling techniques are developed to attain this goal. In this thesis, research is emphasized on the ground motion around excavations due to seismic wave propagation that results from a fault-slip seismic event in the far-field and the near-field. It is found that moment tensor point source model seems to be suitable for the source representation in the far-field and the non-point source model (such as kinematic rupture source model) seems to be suitable for the source representation in the near-field. The modeling results confirm that ground motion is influenced by many factors such as target-source distance, slip direction, spatial location, and geometrical and geological conditions. Influence of wavelength-to-excavation span (/D) ratio on the wavefield is investigated to gain insights of ground motion behavior under both quasi-static and dynamic loading conditions. It is revealed that PPV (peak particle velocity) values increase as the /D ratio increases and the amplification effect increases as the /D ratio decreases. The loading condition maybe changed from the dynamic loading to the quasi-static condition when the /D is larger than 30. Strong dynamic loading should be considered when the /D ratio is small (less than 10, with a shear wavelength less than 50 m and an excavation span greater than 5 m) for most underground excavations. A method is proposed to estimate the quality factor (a measure of energy loss per oscillation cycle) for shear waves propagating in underground hard rocks so as to gain insight into the influence of internal attenuation on seismic wave propagation. A proper shear wave quality factor can be obtained by comparing modeling results with that from a scaling law, even if there are no high quality data for quality factor back analysis. Furthermore, the influence of different geological structures on seismic wave propagation is studied. It is shown that wave propagation patterns around an excavation can be altered and PPV amplification and shielding effect can occur near the excavation boundaries amongst other reasons due to heterogeneities such as tunnels, open and backfilled stopes, and dykes in underground mines. Finally, a coupled numerical procedure, which couples FLAC and SPECFEM2D, is developed to consider the excavation effect on ground motion. The FLAC model considers the excavationinduced stress change and rock mass failure, and passes the input data to SPECFEM2D by invoking FISH scripts. In addition, a new nonlinear velocity model that considers the influence of confinement and rock mass failure on wave velocity is presented. This nonlinear velocity model and the coupled numerical technique are used to model a simple stope excavation problem. It is found that there is a large difference in the wavefields and ground motions between the results from the uniform and non-uniform velocity models. A relatively stronger amplification is observed in the low confinement zones and on the excavation surface in the non-uniform velocity models. Because stress redistribution and rock mass failure around an excavation are considered, a realistic non-uniform velocity field can be obtained. The proposed coupled numerical procedure offers a method to improve the understanding of the site amplification effect and ground motion near excavation boundaries. This thesis presents some insights with regard to seismic wave propagation due to fault-slip seismic events in underground mines. If seismic wave propagation in underground mines can be modeled properly using techniques such as these presented in this thesis, then it is possible to conduct forensic analysis after a large seismic event so as to explain one of many factors that caused rockburst damage localization. Alternatively, the modeling approach may provide valuable inputs for decision-making with regard to strengthening high risk areas to prevent rockburst, thus improving mine safety.

Book Wave Fields in Real Media

Download or read book Wave Fields in Real Media written by José M. Carcione and published by Elsevier. This book was released on 2014-12-08 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil

Book Seismic Wave Propagation in Stratified Media

Download or read book Seismic Wave Propagation in Stratified Media written by Brian Kennett and published by ANU E Press. This book was released on 2009-05-01 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic Wave Propagation in Stratified Media presents a systematic treatment of the interaction of seismic waves with Earth structure. The theoretical development is physically based and is closely tied to the nature of the seismograms observed across a wide range of distance scales - from a few kilometres as in shallow reflection work for geophysical prospecting, to many thousands of kilometres for major earthquakes. A unified framework is presented for all classes of seismic phenomena, for both body waves and surface waves. Since its first publication in 1983 this book has been an important resource for understanding the way in which seismic waves can be understood in terms of reflection and transmission properties of Earth models, and how complete theoretical seismograms can be calculated. The methods allow the development of specific approximations that allow concentration on different seismic arrivals and hence provide a direct tie to seismic observations.

Book The Finite Difference Modelling of Earthquake Motions

Download or read book The Finite Difference Modelling of Earthquake Motions written by Peter Moczo and published by Cambridge University Press. This book was released on 2014-04-24 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.

Book Numerical Simulation in Applied Geophysics

Download or read book Numerical Simulation in Applied Geophysics written by Juan Enrique Santos and published by Birkhäuser. This book was released on 2017-01-13 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic and anisotropic medium at the macroscale. The book presents a procedure determine the coefficients of the effective medium employing a collection of time-harmonic compressibility and shear experiments, in the context of Numerical Rock Physics. Each experiment is associated with a boundary value problem, that is solved using the FEM. This approach offers an alternative to laboratory observations with the advantages that they are inexpensive, repeatable and essentially free from experimental errors. The different topics are followed by illustrative examples of application in Geophysical Exploration. In particular, the effects caused by mesoscopic-scale heterogeneities or the presence of aligned fractures are taking into account in the seismic wave propagation models at the macroscale. The numerical simulations of wave propagation are presented with sufficient detail as to be easily implemented assuming the knowledge of scientific programming techniques.

Book Numerical Methods of Exploration Seismology

Download or read book Numerical Methods of Exploration Seismology written by Gary F. Margrave and published by Cambridge University Press. This book was released on 2019-01-10 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploration seismology uses seismic imaging to form detailed images of the Earth's interior, enabling the location of likely petroleum targets. Due to the size of seismic datasets, sophisticated numerical algorithms are required. This book provides a technical guide to the essential algorithms and computational aspects of data processing, covering the theory and methods of seismic imaging. The first part introduces an extensive online library of MATLAB® seismic data processing codes maintained by the CREWES project at the University of Calgary. Later chapters then focus on digital signal theory and relevant aspects of wave propagation and seismic modelling, followed by deconvolution and seismic migration methods. Presenting a rigorous explanation of how to construct seismic images, it provides readers with practical tools and codes to pursue research projects and analyses. It is ideal for advanced students and researchers in applied geophysics, and for practicing exploration geoscientists in the oil and gas industry.